期刊文献+

Game Theory Applications in a Water Distribution Problem

Game Theory Applications in a Water Distribution Problem
下载PDF
导出
摘要 A water distribution problem in the Mexican Valley is modeled first as a three-person noncooperative game. Each player has a five-dimensional strategy vector, the strategy sets are defined by 15 linear constraints, and the three payoff functions are also linear. A nonlinear optimization problem is first formulated to obtain the Nash equilibrium based on the Kuhn-Tucker conditions, and then, duality theorem is used to develop a computational procedure. The problem can also be considered as a conflict between the three players. The non-symmetric Nash bargaining solution is suggested to find the solution. Multiobjective programming is an alternative solution concept, when the water supply of the three players are the objectives, and the water authority is considered to be the decision maker. The optimal water distribution strategies are determined by using these solution concepts and methods. A water distribution problem in the Mexican Valley is modeled first as a three-person noncooperative game. Each player has a five-dimensional strategy vector, the strategy sets are defined by 15 linear constraints, and the three payoff functions are also linear. A nonlinear optimization problem is first formulated to obtain the Nash equilibrium based on the Kuhn-Tucker conditions, and then, duality theorem is used to develop a computational procedure. The problem can also be considered as a conflict between the three players. The non-symmetric Nash bargaining solution is suggested to find the solution. Multiobjective programming is an alternative solution concept, when the water supply of the three players are the objectives, and the water authority is considered to be the decision maker. The optimal water distribution strategies are determined by using these solution concepts and methods.
机构地区 IHU University
出处 《Journal of Water Resource and Protection》 2013年第1期91-96,共6页 水资源与保护(英文)
关键词 NASH EQUILIBRIUM CONFLICT RESOLUTION MULTIOBJECTIVE Optimization Water Distribution Nash Equilibrium Conflict Resolution Multiobjective Optimization Water Distribution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部