摘要
Propionic acid modified bagasse was used for the removal of reactive yellow 2 and reactive blue 4. The effects of pH, contact time, initial dye concentrations, adsorbent particle size and adsorbent dose on the adsorption of the two dyes were investigated. Additionally, the desorption process and intra-particle diffusion were studied. Acidic pH values were favorable for adsorption of both dyes. The equilibrium adsorption data were best fitted with the Freundlich isotherm for reactive yellow 2 and the Langmiur isotherm for reactive blue 4. The values of their corresponding constants were determined. The kinetic for dye adsorption is well described by a pseudo-first order kinetic model for the reactive yellow 2 and by pseudo-second order for the reactive blue 4. The investigation revealed that the hydroxyl groups of bagasse and the carboxylic group of propionic acid play a great role in the removal of both reactive dyes.
Propionic acid modified bagasse was used for the removal of reactive yellow 2 and reactive blue 4. The effects of pH, contact time, initial dye concentrations, adsorbent particle size and adsorbent dose on the adsorption of the two dyes were investigated. Additionally, the desorption process and intra-particle diffusion were studied. Acidic pH values were favorable for adsorption of both dyes. The equilibrium adsorption data were best fitted with the Freundlich isotherm for reactive yellow 2 and the Langmiur isotherm for reactive blue 4. The values of their corresponding constants were determined. The kinetic for dye adsorption is well described by a pseudo-first order kinetic model for the reactive yellow 2 and by pseudo-second order for the reactive blue 4. The investigation revealed that the hydroxyl groups of bagasse and the carboxylic group of propionic acid play a great role in the removal of both reactive dyes.