摘要
Exploration of groundwater in countries with scarce water resources requires the implementation of effective tools that save time and money. In this study, geographic information systems (GIS) tools and remote sensing data were used to prepare and analyze digital layers of lithology, geological structure, drainage and topography to detect the most promising sites for groundwater exploration in an arid basin in Jordan. A separate map of existing wells was intersected with the generated maps to calculate the percentage of wells in each interval of density and count of lineaments and drainage. Different GIS functions of intersection and spatial query were then applied to produce the final map for the most promising sites for groundwater exploration. The possibility of using digital classification of remote sensing data for mapping the most promising sites for groundwater exploration was also investigated by applying unsupervised classification to a Landsat ETM+ image. Results showed that spatial distribution of the most promising sites for groundwater exploration was dependent on the interrelated factors of lithology, topography and geologic structure. The most promising sites were distributed within 4% of the study area. The highest percentage of groundwater wells was within the alluvial and wadi sediments, which were accurately detected by the digitally classified ETM+. The study showed that remote sensing and GIS provided efficient tools for mapping promising sites for groundwater exploration. However, the data of groundwater wells would contribute to refining the final locations of the most promising sites.
Exploration of groundwater in countries with scarce water resources requires the implementation of effective tools that save time and money. In this study, geographic information systems (GIS) tools and remote sensing data were used to prepare and analyze digital layers of lithology, geological structure, drainage and topography to detect the most promising sites for groundwater exploration in an arid basin in Jordan. A separate map of existing wells was intersected with the generated maps to calculate the percentage of wells in each interval of density and count of lineaments and drainage. Different GIS functions of intersection and spatial query were then applied to produce the final map for the most promising sites for groundwater exploration. The possibility of using digital classification of remote sensing data for mapping the most promising sites for groundwater exploration was also investigated by applying unsupervised classification to a Landsat ETM+ image. Results showed that spatial distribution of the most promising sites for groundwater exploration was dependent on the interrelated factors of lithology, topography and geologic structure. The most promising sites were distributed within 4% of the study area. The highest percentage of groundwater wells was within the alluvial and wadi sediments, which were accurately detected by the digitally classified ETM+. The study showed that remote sensing and GIS provided efficient tools for mapping promising sites for groundwater exploration. However, the data of groundwater wells would contribute to refining the final locations of the most promising sites.