期刊文献+

Comparison of Different Ann Approaches in Daily Pan Evaporation Prediction

下载PDF
导出
摘要 Nowadays, one of the most important effects on water resources under climate change is increasing of free water surface evaporation which depends on the increasing of temperature. In basins, where there are no observed data, free water surface evaporation is taken into account depending on historical temperature and similar data and their long-term statistics. Predicting of real value of evaporation contains some uncertainties. The modeling of evaporation with a small number of predictors has crucial importance on the regions and basins where measurements are not sufficient and/or not exist. In this presented study, daily evaporation prediction models were prepared by using empirical Penman equation, Levenberg-Marquardt algorithm based on 'Feed Forward Back Propagation Artificial Neural Networks (LMANN)', radial basis neural networks (RBNN), generalized regression neural networks (GRNN). When the models were compared, it was noticed that the results of neural network models are statistically more meaningful than the Penman equation. Nowadays, one of the most important effects on water resources under climate change is increasing of free water surface evaporation which depends on the increasing of temperature. In basins, where there are no observed data, free water surface evaporation is taken into account depending on historical temperature and similar data and their long-term statistics. Predicting of real value of evaporation contains some uncertainties. The modeling of evaporation with a small number of predictors has crucial importance on the regions and basins where measurements are not sufficient and/or not exist. In this presented study, daily evaporation prediction models were prepared by using empirical Penman equation, Levenberg-Marquardt algorithm based on 'Feed Forward Back Propagation Artificial Neural Networks (LMANN)', radial basis neural networks (RBNN), generalized regression neural networks (GRNN). When the models were compared, it was noticed that the results of neural network models are statistically more meaningful than the Penman equation.
出处 《Journal of Water Resource and Protection》 2014年第4期319-326,共8页 水资源与保护(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部