期刊文献+

The Effects of Surface Water Velocity on Hyporheic Interchange

The Effects of Surface Water Velocity on Hyporheic Interchange
下载PDF
导出
摘要 When evaluating hyporheic exchange in a flowing stream, it is inappropriate to directly compare stream stage with subsurface hydraulic head (h) to determine direction and magnitude of the gradient between the stream and the subsurface. In the case of moving water, it is invalid to ignore velocity and to assume that stage equals the net downward pressure on the streambed.? The Bernoulli equation describes the distribution of energy within flowing fluids and implies that net pressure decreases as a function of velocity, i.e., the Venturi Effect, which sufficiently reduces the pressure on the streambed to create the appearance of a downward gradient when in fact the gradient may be upward with stream flow drawing water from the subsurface to the surface. A field study correlating the difference between subsurface head and stream stage in a low-gradient stream indicates that the effect is present and significant: shallow subsurface head increases less quickly than stage while deeper subsurface head increases more quickly. These results can substantially improve conceptual models and simulations of hyporheic flow. When evaluating hyporheic exchange in a flowing stream, it is inappropriate to directly compare stream stage with subsurface hydraulic head (h) to determine direction and magnitude of the gradient between the stream and the subsurface. In the case of moving water, it is invalid to ignore velocity and to assume that stage equals the net downward pressure on the streambed.? The Bernoulli equation describes the distribution of energy within flowing fluids and implies that net pressure decreases as a function of velocity, i.e., the Venturi Effect, which sufficiently reduces the pressure on the streambed to create the appearance of a downward gradient when in fact the gradient may be upward with stream flow drawing water from the subsurface to the surface. A field study correlating the difference between subsurface head and stream stage in a low-gradient stream indicates that the effect is present and significant: shallow subsurface head increases less quickly than stage while deeper subsurface head increases more quickly. These results can substantially improve conceptual models and simulations of hyporheic flow.
出处 《Journal of Water Resource and Protection》 2014年第4期327-336,共10页 水资源与保护(英文)
关键词 HYPORHEIC Zone BERNOULLI Equation VENTURI Effect GEOMORPHOLOGY FLUVIAL Groundwater/Surface Water Interaction Streamflow Hyporheic Zone Bernoulli Equation Venturi Effect Geomorphology Fluvial Groundwater/Surface Water Interaction Streamflow
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部