期刊文献+

Applying the Moisture Availability Index (NTDI) over Vegetated Land in Central Asia: Mongolian Steppe 被引量:1

Applying the Moisture Availability Index (NTDI) over Vegetated Land in Central Asia: Mongolian Steppe
下载PDF
导出
摘要 The intensity of recent droughts and the uncertainty of moisture variability in the context of increasing temperatures and decreasing precipitation have affected the Mongolian grassland. Mongolia typifies the steppe terrain and semiarid to arid continental climate that extends across much of Central Asia. In semi-arid areas like Mongolian steppe, vegetation type and distribution are directly relate to the amount of water that plants can extract from the soil. An index for assessment of moisture availability (ma: defined as the ratio of actual to reference evapotranspiration) was developed, namely NTDI [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400300031003800340037003500380031000000 . NTDI (Normalized Day-Night Surface Temperature Difference Index) is defined as the ratio of the difference between the maximum daytime surface temperature and the minimum nighttime surface temperature, to the difference between the maximum and minimum surface temperatures estimated from meteorological data by applying energy balance equations. A verification study conducted at Liudaogou River Basin of the Loess Plateau, China, indicated the capability of NTDI to estimate ma accurately, (R2=0.97,p<0.001) [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400300031003800340037003500380031000000 . In Bayan Unjuul, Mongolia, application of NTDI during the growing season showed a significant inverse exponential correlation with ma (R2=0.86,p<0.001). This result indicates that the NTDI is potent to be used as a surrogate of moisture availability in steppe terrain of Central Asia. The intensity of recent droughts and the uncertainty of moisture variability in the context of increasing temperatures and decreasing precipitation have affected the Mongolian grassland. Mongolia typifies the steppe terrain and semiarid to arid continental climate that extends across much of Central Asia. In semi-arid areas like Mongolian steppe, vegetation type and distribution are directly relate to the amount of water that plants can extract from the soil. An index for assessment of moisture availability (ma: defined as the ratio of actual to reference evapotranspiration) was developed, namely NTDI [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400300031003800340037003500380031000000 . NTDI (Normalized Day-Night Surface Temperature Difference Index) is defined as the ratio of the difference between the maximum daytime surface temperature and the minimum nighttime surface temperature, to the difference between the maximum and minimum surface temperatures estimated from meteorological data by applying energy balance equations. A verification study conducted at Liudaogou River Basin of the Loess Plateau, China, indicated the capability of NTDI to estimate ma accurately, (R2=0.97,p<0.001) [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400300031003800340037003500380031000000 . In Bayan Unjuul, Mongolia, application of NTDI during the growing season showed a significant inverse exponential correlation with ma (R2=0.86,p<0.001). This result indicates that the NTDI is potent to be used as a surrogate of moisture availability in steppe terrain of Central Asia.
出处 《Journal of Water Resource and Protection》 2014年第14期1335-1343,共9页 水资源与保护(英文)
关键词 DROUGHT MONGOLIAN STEPPE Central ASIA NTDI MOISTURE AVAILABILITY (ma) Drought Mongolian Steppe Central Asia NTDI Moisture Availability (ma)
  • 相关文献

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部