期刊文献+

Performance of Twelve Mass Transfer Based Reference Evapotranspiration Models under Humid Climate

Performance of Twelve Mass Transfer Based Reference Evapotranspiration Models under Humid Climate
下载PDF
导出
摘要 Reference evapotranspiration is very important parameter in the hydrological, agricultural and environmental studies and is accurately estimated by the FAO Penman-Monteith equation (FAO-PM) under different climatic conditions. However, due to data requirement of the FAO-PM equation, there is a need to investigate the applicability of alternative ETo equations under limited data. The objectives of this study were to evaluate twelve mass transfer based reference evapotranspiration equations and determine the impact of ETo equation on long term water management sustainability in Tanzania and Kenya. The results showed that the Albrecht, Brockamp-Wenner, Dalto, Meyer, Rohwer and Oudin ETo equations systematically overestimated the daily ETo at all weather stations with relative errors that varied from 34% to 94% relative to the FAO-PM ETo estimates. The Penman, Mahringer, Trabert, and the Romanenko equations performed best across Tanzania and the South Western Kenya with root mean squared errors ranging from 0.98 to 1.48 mm/day, which are relatively high and mean bias error (MBE) varying from -0.33 to 0.02 mm/day and the absolute mean error (AME) from 0.79 to 1.16 mm/day. For sustainable water management, the Trabert equation could be adopted at Songea, the Mahringer equation at Tabora, the Dalton and/or the Rohwer equations at Eldoret, the Romanenko equation at Dodoma, Songea and Eldoret. However, regional calibration of the most performing equation could improve water management at regional level. Reference evapotranspiration is very important parameter in the hydrological, agricultural and environmental studies and is accurately estimated by the FAO Penman-Monteith equation (FAO-PM) under different climatic conditions. However, due to data requirement of the FAO-PM equation, there is a need to investigate the applicability of alternative ETo equations under limited data. The objectives of this study were to evaluate twelve mass transfer based reference evapotranspiration equations and determine the impact of ETo equation on long term water management sustainability in Tanzania and Kenya. The results showed that the Albrecht, Brockamp-Wenner, Dalto, Meyer, Rohwer and Oudin ETo equations systematically overestimated the daily ETo at all weather stations with relative errors that varied from 34% to 94% relative to the FAO-PM ETo estimates. The Penman, Mahringer, Trabert, and the Romanenko equations performed best across Tanzania and the South Western Kenya with root mean squared errors ranging from 0.98 to 1.48 mm/day, which are relatively high and mean bias error (MBE) varying from -0.33 to 0.02 mm/day and the absolute mean error (AME) from 0.79 to 1.16 mm/day. For sustainable water management, the Trabert equation could be adopted at Songea, the Mahringer equation at Tabora, the Dalton and/or the Rohwer equations at Eldoret, the Romanenko equation at Dodoma, Songea and Eldoret. However, regional calibration of the most performing equation could improve water management at regional level.
出处 《Journal of Water Resource and Protection》 2017年第12期1347-1363,共17页 水资源与保护(英文)
关键词 REFERENCE EVAPOTRANSPIRATION Mass Transfer EASTERN AFRICA Water Reference Evapotranspiration Mass Transfer Eastern Africa Water
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部