期刊文献+

Implications of Different DEMs on Watershed Runoffs Estimations 被引量:2

Implications of Different DEMs on Watershed Runoffs Estimations
下载PDF
导出
摘要 Watershed modelling tools like ArcSWAT, an ArcGIS extension of Soil and Water Assessment tool (SWAT), are useful to watershed managers in many ways. One particular use is analyzing model outputs for decision making related to waterway restoration and mitigation, which is often undertaken to improve water quality in streams. The present study evaluates the use of digital elevation model (DEM) at 10 meter, 30 meter, and 100 meter pixel size on non-point runoff predictions for three sub-watersheds in Raritan River Basin in New Jersey. These three watersheds include: Bound Brook, Lamington River, and Lawrence Brook watersheds. ArcSWAT is utilized to investigate the difference due to DEM variation in predicting monthly estimates of pollutant loads including ammonium (NH4), nitrite (NO2) and sediment transported with water out of a watershed. Using land use/cover, slope and soil data for 2012, monthly pollutant loads are calculated for each sub-basin in the watershed over a 10-year simulation period (2012-2022) in ArcSWAT. Overall statistical and spatial results show that ArcSWAT results are sensitive to changes in DEM pixel size for watershed modeling. The results show that total sum of monthly runoffs including NH4, NO2 and sediment differ among the three different DEMs. Moreover, the spatial pattern of input (in sub-catchments) also changes among the three DEMs for most watersheds. This indicates that watershed managers need to supplement model predictions with field measurements before making substantial investments in stream restoration programs. Watershed modelling tools like ArcSWAT, an ArcGIS extension of Soil and Water Assessment tool (SWAT), are useful to watershed managers in many ways. One particular use is analyzing model outputs for decision making related to waterway restoration and mitigation, which is often undertaken to improve water quality in streams. The present study evaluates the use of digital elevation model (DEM) at 10 meter, 30 meter, and 100 meter pixel size on non-point runoff predictions for three sub-watersheds in Raritan River Basin in New Jersey. These three watersheds include: Bound Brook, Lamington River, and Lawrence Brook watersheds. ArcSWAT is utilized to investigate the difference due to DEM variation in predicting monthly estimates of pollutant loads including ammonium (NH4), nitrite (NO2) and sediment transported with water out of a watershed. Using land use/cover, slope and soil data for 2012, monthly pollutant loads are calculated for each sub-basin in the watershed over a 10-year simulation period (2012-2022) in ArcSWAT. Overall statistical and spatial results show that ArcSWAT results are sensitive to changes in DEM pixel size for watershed modeling. The results show that total sum of monthly runoffs including NH4, NO2 and sediment differ among the three different DEMs. Moreover, the spatial pattern of input (in sub-catchments) also changes among the three DEMs for most watersheds. This indicates that watershed managers need to supplement model predictions with field measurements before making substantial investments in stream restoration programs.
出处 《Journal of Water Resource and Protection》 2019年第4期448-467,共20页 水资源与保护(英文)
关键词 Runoffs DEM SWAT STREAM RESTORATION WATERSHED Characteristics WATERSHED Modeling Runoffs DEM SWAT Stream Restoration Watershed Characteristics Watershed Modeling
  • 相关文献

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部