期刊文献+

Removing Iron Ions Contaminants from Groundwater Using Modified Nano-Hydroxyapatite by Nano Manganese Oxide

Removing Iron Ions Contaminants from Groundwater Using Modified Nano-Hydroxyapatite by Nano Manganese Oxide
下载PDF
导出
摘要 In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed. In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed.
出处 《Journal of Water Resource and Protection》 2019年第6期789-809,共21页 水资源与保护(英文)
关键词 GROUNDWATER Adsorption NANO Materials HYDROXYAPATITE Manganese Oxide Iron Ions Kinetic THERMODYNAMIC Groundwater Adsorption Nano Materials Hydroxyapatite Manganese Oxide Iron Ions Kinetic Thermodynamic
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部