期刊文献+

Biological Treatability of Low Total Dissolved Solids (LTDS) Using SBR as a Pre-Treatment for Reverse Osmosis 被引量:1

Biological Treatability of Low Total Dissolved Solids (LTDS) Using SBR as a Pre-Treatment for Reverse Osmosis
下载PDF
导出
摘要 Huge quantity of effluents is generated from pharmaceutical industries attributed to their wide array of manufacturing and maintenance processes. Wastewaters from pharmaceuticals are characterized by the presence of solids, pH, temperature, biodegradable organic compounds, unusual turbidity, hardness and conductivity. Wastewater from pharmaceutical industry arising from various units is categorised as low total dissolved solids (LTDS) and high total dissolved solids (HTDS) based on the concentration of total dissolved solids. The present study focuses on treatment of LTDS using a combination of biological treatment followed by membrane process, reverse osmosis. This research presents the results from the pilot-scale studies focussed on biological treatment using SBR as pre-treatment for RO towards the removal of LTDS effluent. Three-month data on a daily basis is presented. The efficiency of the process was tested with a reduction in parameters like total dissolved solids and chemical oxygen demand. SBR tested for its suitability as a preliminary treatment for the Reverse Osmosis process during the months of August-October. The highest and lowest TDS reduction was recorded as 9.72% and ?4.67% in the month of August. The highest and least COD reduction was recorded as 87.28% and 80.66% in the same month. The highest and lowest TDS reduction was recorded as 0.84% and ?7.92% in the month of September. The highest and least COD reduction was recorded as 87.07% and 83.28% in the same month. The performance of RO tested for its efficiency in removing the TDS and COD after SBR as pre-treatment. The highest and lowest TDS reduction was recorded as 94.93% and 93.27% in the month of August. The highest and least COD reduction was recorded as 96.84% and 90.19% in the same month. The highest and lowest TDS reduction was recorded at 96.53% and 91.25% in the month of October. The highest and least COD reduction was recorded as 94.31% and 72.57% in the same month. SBR has proved to be a promising solution for pre-treatment removing all substances that might result in membrane fouling. Hence, the present study concludes that a combination of SBR and RO will be a promising solution for effective removal of TDS and COD from pharmaceutical wastewaters. Huge quantity of effluents is generated from pharmaceutical industries attributed to their wide array of manufacturing and maintenance processes. Wastewaters from pharmaceuticals are characterized by the presence of solids, pH, temperature, biodegradable organic compounds, unusual turbidity, hardness and conductivity. Wastewater from pharmaceutical industry arising from various units is categorised as low total dissolved solids (LTDS) and high total dissolved solids (HTDS) based on the concentration of total dissolved solids. The present study focuses on treatment of LTDS using a combination of biological treatment followed by membrane process, reverse osmosis. This research presents the results from the pilot-scale studies focussed on biological treatment using SBR as pre-treatment for RO towards the removal of LTDS effluent. Three-month data on a daily basis is presented. The efficiency of the process was tested with a reduction in parameters like total dissolved solids and chemical oxygen demand. SBR tested for its suitability as a preliminary treatment for the Reverse Osmosis process during the months of August-October. The highest and lowest TDS reduction was recorded as 9.72% and ?4.67% in the month of August. The highest and least COD reduction was recorded as 87.28% and 80.66% in the same month. The highest and lowest TDS reduction was recorded as 0.84% and ?7.92% in the month of September. The highest and least COD reduction was recorded as 87.07% and 83.28% in the same month. The performance of RO tested for its efficiency in removing the TDS and COD after SBR as pre-treatment. The highest and lowest TDS reduction was recorded as 94.93% and 93.27% in the month of August. The highest and least COD reduction was recorded as 96.84% and 90.19% in the same month. The highest and lowest TDS reduction was recorded at 96.53% and 91.25% in the month of October. The highest and least COD reduction was recorded as 94.31% and 72.57% in the same month. SBR has proved to be a promising solution for pre-treatment removing all substances that might result in membrane fouling. Hence, the present study concludes that a combination of SBR and RO will be a promising solution for effective removal of TDS and COD from pharmaceutical wastewaters.
出处 《Journal of Water Resource and Protection》 2020年第2期135-154,共20页 水资源与保护(英文)
关键词 LOW Total Dissolved Solids SEQUENCING BATCH Reactor Reverse Osmosis PHARMACEUTICAL EFFLUENTS Waste Water Low Total Dissolved Solids Sequencing Batch Reactor Reverse Osmosis Pharmaceutical Effluents Waste Water
  • 相关文献

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部