期刊文献+

Optimization of Irrigation Water Allocation Framework Based on Genetic Algorithm Approach

Optimization of Irrigation Water Allocation Framework Based on Genetic Algorithm Approach
下载PDF
导出
摘要 In a world where excessive use and degradation of water resources are threatening the sustainability of livelihoods dependent on water and agriculture, increased food production will have to be done in the face of a changing climate and climate variability. There is a need to make optimal use of the available water resource to maximize productivity. Climate-smart irrigation is aimed at increasing per unit production and income from irrigated cropping systems without having negative impacts on the environment or other water users and uses. This paper developed a water allocation model using Genetic Algorithm to equitably allocation available water to the various sectors in Kano River Irrigation Scheme yielding an optimal as well as equitable water release with a 96.44% demand met. An average relative supply of 0.94 was obtained indicating the there was even supply of water to all the sectors. The model is robust and relatively easy to apply and can be employed by farm managers to achieve equity and optimal use of the available water resource. In a world where excessive use and degradation of water resources are threatening the sustainability of livelihoods dependent on water and agriculture, increased food production will have to be done in the face of a changing climate and climate variability. There is a need to make optimal use of the available water resource to maximize productivity. Climate-smart irrigation is aimed at increasing per unit production and income from irrigated cropping systems without having negative impacts on the environment or other water users and uses. This paper developed a water allocation model using Genetic Algorithm to equitably allocation available water to the various sectors in Kano River Irrigation Scheme yielding an optimal as well as equitable water release with a 96.44% demand met. An average relative supply of 0.94 was obtained indicating the there was even supply of water to all the sectors. The model is robust and relatively easy to apply and can be employed by farm managers to achieve equity and optimal use of the available water resource.
出处 《Journal of Water Resource and Protection》 2020年第4期316-329,共14页 水资源与保护(英文)
关键词 Climate-Smart AGRICULTURE IRRIGATION WATER ALLOCATION SECTORS RELATIVE WATER Supply Climate-Smart Agriculture Irrigation Water Allocation Sectors Relative Water Supply
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部