期刊文献+

Comparative Analysis of Chemical, Physical and Biological Contaminants in Drinking Water in Various Developed Countries around the World

Comparative Analysis of Chemical, Physical and Biological Contaminants in Drinking Water in Various Developed Countries around the World
下载PDF
导出
摘要 Sustaining a reliable and contaminant-free drinking water is becoming an increasing challenge worldwide due to human activity, industrial waste, and agricultural overuse. Surface water is the main source of drinking water around the world. However, groundwater is also becoming increasingly popular, due to its clarity and minimal need for processing to reduce turbidity. Over the years, the demand and growth in the agricultural industry has also been the means of groundwater contamination. Due to the health burden that raw water can pose, water must be processed and purified prior to consumption. Raw water quality can be compromised by physical, chemical (heavy metals and disinfection by-products), and biological contaminants. Biological contaminants can significantly impact immunocompromised populations, while chemical contaminants can impact the growth and development of young children. Although obtaining a steady and high-quality water flow to the general population is an increasing challenge, developed countries have utilized state-of-the-art technologies and techniques to provide contaminant-free water to their citizens. This research aims to provide information about the regulatory parameters, characteristics, and sources of safe drinking water in the world as a model for future use in the developing world. In this, secondary data was used to compare and contrast drinking water quality among countries in the European Union, the United States, Canada, the United Kingdom, Singapore, New Zealand, Australia, Qatar, and the United Arab Emirates. The data indicates that Ireland and the United Kingdom have relatively lower amounts of contaminants in their drinking water. Upon completing this research, it is recommended that countries desiring clean drinking water systems should initiate and invest in programs that control and protect treatment plants, water distribution systems, water sources, and catchments. Sustaining a reliable and contaminant-free drinking water is becoming an increasing challenge worldwide due to human activity, industrial waste, and agricultural overuse. Surface water is the main source of drinking water around the world. However, groundwater is also becoming increasingly popular, due to its clarity and minimal need for processing to reduce turbidity. Over the years, the demand and growth in the agricultural industry has also been the means of groundwater contamination. Due to the health burden that raw water can pose, water must be processed and purified prior to consumption. Raw water quality can be compromised by physical, chemical (heavy metals and disinfection by-products), and biological contaminants. Biological contaminants can significantly impact immunocompromised populations, while chemical contaminants can impact the growth and development of young children. Although obtaining a steady and high-quality water flow to the general population is an increasing challenge, developed countries have utilized state-of-the-art technologies and techniques to provide contaminant-free water to their citizens. This research aims to provide information about the regulatory parameters, characteristics, and sources of safe drinking water in the world as a model for future use in the developing world. In this, secondary data was used to compare and contrast drinking water quality among countries in the European Union, the United States, Canada, the United Kingdom, Singapore, New Zealand, Australia, Qatar, and the United Arab Emirates. The data indicates that Ireland and the United Kingdom have relatively lower amounts of contaminants in their drinking water. Upon completing this research, it is recommended that countries desiring clean drinking water systems should initiate and invest in programs that control and protect treatment plants, water distribution systems, water sources, and catchments.
作者 Kaleh Karim Sujata Guha Ryan Beni Kaleh Karim;Sujata Guha;Ryan Beni(Department of Chemistry, Tennessee State University, Nashville, TN, USA;Department of Biological Sciences, Tennessee State University, Nashville, TN, USA)
出处 《Journal of Water Resource and Protection》 2020年第8期714-728,共15页 水资源与保护(英文)
关键词 Potable Water Water Contaminants Drinking Water Lead TURBIDITY Water Quality Heavy Metals Disinfection By-Products Water Sources Potable Water Water Contaminants Drinking Water Lead Turbidity Water Quality Heavy Metals Disinfection By-Products Water Sources
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部