摘要
To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the geological model of the geothermal reinjection demonstration project in Dezhou City. The biological process of porous media clogging was investigated by analyzing the variation of permeability within the medium, the main indexes of nutrient salts, and the content of extracellular polymeric substances (EPS). High-throughput sequencing, based on 16S rRNA, was used to analyze the characteristics and succession of microbial communities during the reinjection of geothermal water. The results of the study show that significant bio-clogging occurs during the reinjection of geothermal water, with an increase in the heterogeneity of the thermal reservoir medium, and a decrease in permeability. The extent of clogging gradually reduces with an increase in seepage path. Thus, thermal reservoir clogging is more serious closer to the water inlet. With an increase in the duration of reinjection, the permeability of the porous medium undergoes three stages: “rapid”, “decline-slow”, and “decrease-stable”. The results show that the richness and diversity of the bacterial community increase and decrease, respectively, during the reinjection process. Bacterial community succession occurs, and the bacterial communities mainly include the Proteobacteria and Bacteroidetes phyla. <em>Pseudomonas</em> and <em>Devosia</em> are respectively the dominant bacteria in the early and late stages of geothermal water reinjection.
To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the geological model of the geothermal reinjection demonstration project in Dezhou City. The biological process of porous media clogging was investigated by analyzing the variation of permeability within the medium, the main indexes of nutrient salts, and the content of extracellular polymeric substances (EPS). High-throughput sequencing, based on 16S rRNA, was used to analyze the characteristics and succession of microbial communities during the reinjection of geothermal water. The results of the study show that significant bio-clogging occurs during the reinjection of geothermal water, with an increase in the heterogeneity of the thermal reservoir medium, and a decrease in permeability. The extent of clogging gradually reduces with an increase in seepage path. Thus, thermal reservoir clogging is more serious closer to the water inlet. With an increase in the duration of reinjection, the permeability of the porous medium undergoes three stages: “rapid”, “decline-slow”, and “decrease-stable”. The results show that the richness and diversity of the bacterial community increase and decrease, respectively, during the reinjection process. Bacterial community succession occurs, and the bacterial communities mainly include the Proteobacteria and Bacteroidetes phyla. <em>Pseudomonas</em> and <em>Devosia</em> are respectively the dominant bacteria in the early and late stages of geothermal water reinjection.