摘要
This experiment examined the fluctuations in nitrogen gas supersaturation throughout the day in three karst springs (upper, side, and lower) at McNenny State Fish Hatchery, rural Spearfish, Lawrence County, South Dakota, USA. Total gas pressures, oxygen percent saturation, and nitrogen percent saturation were recorded six times/day on eight days over a 26-day period in each of the three springs. Total gas pressure did not vary significantly throughout the day in any of the springs. However, percent oxygen and nitrogen saturation were significantly different throughout the day in all three springs. The highest mean (SE) nitrogen supersaturation value of 118.5 (1.1)% was observed in the lower spring at 07:00. The lowest mean nitrogen supersaturation values were 114.5 (1.1)% at 13:00 in the upper spring, and 114.2 (0.2)% and 113.1 (0.7)% at 15:00 in the side and lower spring, respectively. At 118% nitrogen supersaturation, gas bubble disease is likely to occur in fish, resulting in potentially high levels of mortality if untreated spring water was used for fish production. The results of this study indicate the importance of recording nitrogen gas levels at sunrise or early in the morning, when nitrogen is highest and oxygen is lowest, to obtain accurate and reproducible data.
This experiment examined the fluctuations in nitrogen gas supersaturation throughout the day in three karst springs (upper, side, and lower) at McNenny State Fish Hatchery, rural Spearfish, Lawrence County, South Dakota, USA. Total gas pressures, oxygen percent saturation, and nitrogen percent saturation were recorded six times/day on eight days over a 26-day period in each of the three springs. Total gas pressure did not vary significantly throughout the day in any of the springs. However, percent oxygen and nitrogen saturation were significantly different throughout the day in all three springs. The highest mean (SE) nitrogen supersaturation value of 118.5 (1.1)% was observed in the lower spring at 07:00. The lowest mean nitrogen supersaturation values were 114.5 (1.1)% at 13:00 in the upper spring, and 114.2 (0.2)% and 113.1 (0.7)% at 15:00 in the side and lower spring, respectively. At 118% nitrogen supersaturation, gas bubble disease is likely to occur in fish, resulting in potentially high levels of mortality if untreated spring water was used for fish production. The results of this study indicate the importance of recording nitrogen gas levels at sunrise or early in the morning, when nitrogen is highest and oxygen is lowest, to obtain accurate and reproducible data.
作者
Molly A. Gross
Jill M. Voorhees
Abigail Semple Domagall
Michael E. Barnes
Molly A. Gross;Jill M. Voorhees;Abigail Semple Domagall;Michael E. Barnes(Department of Game, Fish and Parks, McNenny State Fish Hatchery, Spearfish, South Dakota, USA;School of Natural Sciences, Environmental Physical Science, Black Hills State University, Spearfish, South Dakota, USA)