期刊文献+

How many donor colonies should be cross-fertilized for nursery farming of sexually propagated corals?

How many donor colonies should be cross-fertilized for nursery farming of sexually propagated corals?
下载PDF
导出
摘要 Coral reef restoration approaches have often utilized adult colonies as sources for fragments (i.e. clones) to be transplanted. Although restoration through this method is fast and cheap, it has been pointed out that it may reduce genetic diversity of the restored population. Low genetic diversity is a concern for reef restoration when seed fragments are raised asexually from only a few donor colonies. This can lead to lower fertilization rates among seed fragments, and reducing the longterm benefits of reef restoration in particular areas. Additionally, low genetic diversity can compound the effects of increased ocean temperature and other environmental stressors, further jeopardizing the health of a reef. An alternative approach through sexually propagated coral cultures and out-plantings can alleviate this problem. Sexually produced offsprings are more genetically diverse. They can be produced in far greater numbers than coral fragments and do not imply destructive methods. Ongoing research at the Akajima Marine Science Laboratory in Okinawa, Japan has helped to improve the production and maintenance of sexually propagated larval cultures. Our results show that crosses between gametes from 6 or more colonies will provide the highest fertilization rate (>95%). Based on the results, we suggest the use of 6 or more donor colonies for practical gamete fertilization in sexually derived coral culture. Coral reef restoration approaches have often utilized adult colonies as sources for fragments (i.e. clones) to be transplanted. Although restoration through this method is fast and cheap, it has been pointed out that it may reduce genetic diversity of the restored population. Low genetic diversity is a concern for reef restoration when seed fragments are raised asexually from only a few donor colonies. This can lead to lower fertilization rates among seed fragments, and reducing the longterm benefits of reef restoration in particular areas. Additionally, low genetic diversity can compound the effects of increased ocean temperature and other environmental stressors, further jeopardizing the health of a reef. An alternative approach through sexually propagated coral cultures and out-plantings can alleviate this problem. Sexually produced offsprings are more genetically diverse. They can be produced in far greater numbers than coral fragments and do not imply destructive methods. Ongoing research at the Akajima Marine Science Laboratory in Okinawa, Japan has helped to improve the production and maintenance of sexually propagated larval cultures. Our results show that crosses between gametes from 6 or more colonies will provide the highest fertilization rate (>95%). Based on the results, we suggest the use of 6 or more donor colonies for practical gamete fertilization in sexually derived coral culture.
出处 《Natural Resources》 2014年第10期521-526,共6页 自然资源(英文)
关键词 ACROPORA CORAL FARMING CORAL REEFS GAMETE Fertilization Genetic Diversity Reef Rehabilitation Acropora Coral Farming Coral Reefs Gamete Fertilization Genetic Diversity Reef Rehabilitation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部