期刊文献+

Measuring Criticality of Raw Materials: An Empirical Approach Assessing the Supply Risk Dimension of Commodity Criticality

Measuring Criticality of Raw Materials: An Empirical Approach Assessing the Supply Risk Dimension of Commodity Criticality
下载PDF
导出
摘要 Providing a sustainable and reliable supply of raw materials at economic prices has become essential to industrialized economies. Therefore, the need for both economical and sustainable methods and strategies for the management of raw materials has been postulated to enable companies and economies to counteract dramatic effects of supply disruptions, or at least to provide early warnings. The relevant studies assign generic weights to different driving factors and therefrom derive criticality indexes. However, it often remains open how to interpret the resulting measures and how to apply them practically. Here we show that based on current commodity key figures, it is possible to empirically determine the risk for future price increases and fluctuations. Thus, we can identify future supply risks and incorporate their patterns into an empirically calibrated criticality measurement. To this end, we apply the well-known compounding framework used by many companies for their financial planning, calculating net present values and volatility from the predicted future price development. To calibrate each resource specific model, we perform extended regression analyses on our compounded criticality index from time series of 42 (out of about 60 industrially relevant) chemical elements. The analysis thereby covers 9 driving factors for criticality and a 40-year time span. Our results suggest a fundamental modification of current practices for criticality assessment, in particular by scaling the criticality measure to correspond with the net present value of future commodity expenses and future volatility. Providing a sustainable and reliable supply of raw materials at economic prices has become essential to industrialized economies. Therefore, the need for both economical and sustainable methods and strategies for the management of raw materials has been postulated to enable companies and economies to counteract dramatic effects of supply disruptions, or at least to provide early warnings. The relevant studies assign generic weights to different driving factors and therefrom derive criticality indexes. However, it often remains open how to interpret the resulting measures and how to apply them practically. Here we show that based on current commodity key figures, it is possible to empirically determine the risk for future price increases and fluctuations. Thus, we can identify future supply risks and incorporate their patterns into an empirically calibrated criticality measurement. To this end, we apply the well-known compounding framework used by many companies for their financial planning, calculating net present values and volatility from the predicted future price development. To calibrate each resource specific model, we perform extended regression analyses on our compounded criticality index from time series of 42 (out of about 60 industrially relevant) chemical elements. The analysis thereby covers 9 driving factors for criticality and a 40-year time span. Our results suggest a fundamental modification of current practices for criticality assessment, in particular by scaling the criticality measure to correspond with the net present value of future commodity expenses and future volatility.
出处 《Natural Resources》 2015年第1期56-78,共23页 自然资源(英文)
关键词 RAW Materials CRITICALITY Assessment COMMODITY CRITICALITY CRITICALITY Index Raw Materials Criticality Assessment Commodity Criticality Criticality Index
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部