摘要
Air pollution is defined as the presence of a substance in the atmosphere that is harmful to human health, living things, and/or has a negative impact on the environment. A plant such as Tillandsia recurvata, ball moss, could be used as an inexpensive biological indicator for urban pollution. The purpose of this research was to determine if ball moss could be used as a biological indicator of urban pollution and retain oil pollution. Multiple sites were identified and grouped by vehicular traffic frequency (counts) using the Louisiana State Department of Transportation and Development (LaDOTD) traffic data to randomly select five low (0.0 - 7000), and five medium/high frequency (7001 to >14,000) traffic counts in locations within Baton Rouge, La. city limits. Differential analysis determined that harvested ball moss tissue levels from areas with low traffic (<0.05 level) contained lower S concentrations than plants tested from high traffic counts. In a second study, dried Tillandsia recurvata plant tissue accumulated greater oil weight than absorbent paper towels. Tillandsia recurvata absorbed and/or retained oil at a greater ratio of oil than its own mass. Therefore, the results of each experiment indicated that Tillandsia recurvata may successfully function as a biological indicator and serve as an oil retentionist on a small-scale test. Further research is needed on a larger-scale area to confirm the efficacy of ball mosses for controlling water pollution in-situ.
Air pollution is defined as the presence of a substance in the atmosphere that is harmful to human health, living things, and/or has a negative impact on the environment. A plant such as Tillandsia recurvata, ball moss, could be used as an inexpensive biological indicator for urban pollution. The purpose of this research was to determine if ball moss could be used as a biological indicator of urban pollution and retain oil pollution. Multiple sites were identified and grouped by vehicular traffic frequency (counts) using the Louisiana State Department of Transportation and Development (LaDOTD) traffic data to randomly select five low (0.0 - 7000), and five medium/high frequency (7001 to >14,000) traffic counts in locations within Baton Rouge, La. city limits. Differential analysis determined that harvested ball moss tissue levels from areas with low traffic (<0.05 level) contained lower S concentrations than plants tested from high traffic counts. In a second study, dried Tillandsia recurvata plant tissue accumulated greater oil weight than absorbent paper towels. Tillandsia recurvata absorbed and/or retained oil at a greater ratio of oil than its own mass. Therefore, the results of each experiment indicated that Tillandsia recurvata may successfully function as a biological indicator and serve as an oil retentionist on a small-scale test. Further research is needed on a larger-scale area to confirm the efficacy of ball mosses for controlling water pollution in-situ.
作者
Caitlyn Rogers
Edward Bush
Caitlyn Rogers;Edward Bush(St. Joseph’s Academy, Baton Rouge, USA;LSU AgCenter, Baton Rouge, USA)