期刊文献+

Effect of Base Width and Stiffness of the Structure on Period of Vibration of RC Framed Buildings in Seismic Analysis

Effect of Base Width and Stiffness of the Structure on Period of Vibration of RC Framed Buildings in Seismic Analysis
下载PDF
导出
摘要 Fundamental natural period of vibration T of the building is an important parameter for evaluation of seismic base shear. Empirical equations given in the Indian seismic code for the calculation of the fundamental period of a framed structure, primarily as a function of height, do not consider the effect of stiffness of the structure, base dimensions of the structure, number of panels in both the directions, amount of infill and properties of the infill. The fundamental period can be evaluated using simplified expressions found in codes, which are based on earthquake recordings in existing buildings, laboratory tests, numerical or analytical computations. These technical codes provide expressions which depend on basic parameters such as building height or number of stories. Building periods predicted by these expressions are widely used in practice although it has been observed that there is scope for further improvement in these equations since the height alone is inadequate to explain period variability. It is also known that the period of a RC frame structure differs depending on whether the longitudinal or transverse direction of the structure is considered. The aim of this study is to find the effects of building base width in both the directions, stiffness of the structure etc. and to predict the fundamental period of vibration of reinforced concrete buildings with moment resisting frames (MRF). A few examples of dynamic analysis are presented in this study to show the effect of base dimensions and stiffness of the structure in calculating the time period of the structure. And it is recommended to be incorporated in the formula for evaluating the natural period of vibration of structures. Fundamental natural period of vibration T of the building is an important parameter for evaluation of seismic base shear. Empirical equations given in the Indian seismic code for the calculation of the fundamental period of a framed structure, primarily as a function of height, do not consider the effect of stiffness of the structure, base dimensions of the structure, number of panels in both the directions, amount of infill and properties of the infill. The fundamental period can be evaluated using simplified expressions found in codes, which are based on earthquake recordings in existing buildings, laboratory tests, numerical or analytical computations. These technical codes provide expressions which depend on basic parameters such as building height or number of stories. Building periods predicted by these expressions are widely used in practice although it has been observed that there is scope for further improvement in these equations since the height alone is inadequate to explain period variability. It is also known that the period of a RC frame structure differs depending on whether the longitudinal or transverse direction of the structure is considered. The aim of this study is to find the effects of building base width in both the directions, stiffness of the structure etc. and to predict the fundamental period of vibration of reinforced concrete buildings with moment resisting frames (MRF). A few examples of dynamic analysis are presented in this study to show the effect of base dimensions and stiffness of the structure in calculating the time period of the structure. And it is recommended to be incorporated in the formula for evaluating the natural period of vibration of structures.
出处 《Open Journal of Earthquake Research》 2015年第2期65-73,共9页 地震研究(英文)
关键词 BASE DIMENSIONS Dynamic Analysis NATURAL PERIOD of VIBRATION STIFFNESS Base Dimensions Dynamic Analysis Natural Period of Vibration Stiffness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部