期刊文献+

Cycling of Carbon and Other Elements in a Beech Forest Hestehave, Jutland, Denmark, in the Past 50 Years

Cycling of Carbon and Other Elements in a Beech Forest Hestehave, Jutland, Denmark, in the Past 50 Years
下载PDF
导出
摘要 Plant biomass, primary production and mineral cycling in the beech forest (Fagus sylvatica L.), Hestehave in Jutland, Denmark were studied over a 50-year period. The role of the forest as a carbon sink was also assessed. Aboveground tree biomass was 226 t·ha-1 in 1970 and after a 50-year 539 t·ha-1 in 2014, an unexpected increase with 313 t·ha-1. Annual production at those two points in time was 13.4 and 20.5 t·ha-1, respectively. It was apparent that the tree biomass was still acting as a sink for carbon, which was the dominant element in the aboveground parts. The concentration of other elements (N > K > Mg > P > S > Na > Mn > Zn > Fe > Cu) ranged from 495 to 0.4 kg·ha-1. Annual litterfall restored 3.2 t·ha-1 to the soil as organic matter or 1.6 t·ha-1 as carbon. Over the year 53% of the litterfall was decomposed. A pH decrease of 0.95 units in the soil was observed between 1968 and 1993. This was attributed to fallout from a neighbouring thermal heating station affecting sulfur deposition and increasing soil acidification. After 1993, when filters were fitted in the heating station, the pH decrease in the soil was smaller, only 0.09 pH-units up to 2011. The increased tree growth is an additional, likely explanation for the observed soil acidification. Deposition of the growth-limiting element nitrogen increased during later years and is now, most likely around 20 kg·ha-1 per annum, which may partly contribute to the increased production. Plant biomass, primary production and mineral cycling in the beech forest (Fagus sylvatica L.), Hestehave in Jutland, Denmark were studied over a 50-year period. The role of the forest as a carbon sink was also assessed. Aboveground tree biomass was 226 t·ha-1 in 1970 and after a 50-year 539 t·ha-1 in 2014, an unexpected increase with 313 t·ha-1. Annual production at those two points in time was 13.4 and 20.5 t·ha-1, respectively. It was apparent that the tree biomass was still acting as a sink for carbon, which was the dominant element in the aboveground parts. The concentration of other elements (N > K > Mg > P > S > Na > Mn > Zn > Fe > Cu) ranged from 495 to 0.4 kg·ha-1. Annual litterfall restored 3.2 t·ha-1 to the soil as organic matter or 1.6 t·ha-1 as carbon. Over the year 53% of the litterfall was decomposed. A pH decrease of 0.95 units in the soil was observed between 1968 and 1993. This was attributed to fallout from a neighbouring thermal heating station affecting sulfur deposition and increasing soil acidification. After 1993, when filters were fitted in the heating station, the pH decrease in the soil was smaller, only 0.09 pH-units up to 2011. The increased tree growth is an additional, likely explanation for the observed soil acidification. Deposition of the growth-limiting element nitrogen increased during later years and is now, most likely around 20 kg·ha-1 per annum, which may partly contribute to the increased production.
机构地区 Department of Ecology
出处 《Open Journal of Forestry》 2015年第3期296-312,共17页 林学期刊(英文)
关键词 Plant BIOMASS Primary Production LITTERFALL Deposition CYCLING of C N P S and CARBON SINK Plant Biomass Primary Production Litterfall Deposition Cycling of C N P S and Carbon Sink
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部