期刊文献+

Using Biophysical Variables and Stand Density to Estimate Growth and Yield of <i>Pinus patula</i>in Antioquia, Colombia

Using Biophysical Variables and Stand Density to Estimate Growth and Yield of <i>Pinus patula</i>in Antioquia, Colombia
下载PDF
导出
摘要 Timberland investment opportunities in Colombia are expected to increase as a result of the peace agreement recently signed between the Colombian government and the Revolutionary Armed Forces of Colombia. This new socio-political environment may facilitate the expansion of commercial forest plantations on a wider range of site conditions that are currently considered in existing biometric tools. Data from 1119 temporary plots of unthinned, unmanaged, and genetically unimproved Pinus patula plantations in the Antioquia region were combined with a large set of biophysical attributes to identify spatial variation in yield. A wide array of biophysical covariates was explored to characterize the most favorable environmental conditions for the species, and to identify potential explanatory variables to be included in forest yield models. The mathematical form of the model is the von Bertalanffy-Chapman-Richards type, with parameters: asymptote, intrinsic growth rate and allometric constant. The parameters were expressed as linear functions of soil pH, terrain slope, the mean annual temperature to mean annual precipitation ratio, and stand density. The statistical contribution of selected covariates was evaluated using the likelihood ratio test. The model was validated using an independent set of 133 observations. The spatial representation of the model depicts the timber production potential and allows for the identification of the most suitable geographical areas to establish Pinus patula plantations in Antioquia, Colombia. The estimated yield model provides a reliable baseline for timber production, and insight into timberland investments in Colombia. Timberland investment opportunities in Colombia are expected to increase as a result of the peace agreement recently signed between the Colombian government and the Revolutionary Armed Forces of Colombia. This new socio-political environment may facilitate the expansion of commercial forest plantations on a wider range of site conditions that are currently considered in existing biometric tools. Data from 1119 temporary plots of unthinned, unmanaged, and genetically unimproved Pinus patula plantations in the Antioquia region were combined with a large set of biophysical attributes to identify spatial variation in yield. A wide array of biophysical covariates was explored to characterize the most favorable environmental conditions for the species, and to identify potential explanatory variables to be included in forest yield models. The mathematical form of the model is the von Bertalanffy-Chapman-Richards type, with parameters: asymptote, intrinsic growth rate and allometric constant. The parameters were expressed as linear functions of soil pH, terrain slope, the mean annual temperature to mean annual precipitation ratio, and stand density. The statistical contribution of selected covariates was evaluated using the likelihood ratio test. The model was validated using an independent set of 133 observations. The spatial representation of the model depicts the timber production potential and allows for the identification of the most suitable geographical areas to establish Pinus patula plantations in Antioquia, Colombia. The estimated yield model provides a reliable baseline for timber production, and insight into timberland investments in Colombia.
出处 《Open Journal of Forestry》 2019年第3期195-213,共19页 林学期刊(英文)
关键词 Von BERTALANFFY Chapman-Richards Fixed-Effect Models Forest Productivity Mexican PINE Mean Annual INCREMENT Von Bertalanffy Chapman-Richards Fixed-Effect Models Forest Productivity Mexican Pine Mean Annual Increment
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部