摘要
Using airborne radiometric geophysical data, one can easily investigate a wide region in a short time and with little cost to finally find areas that are rich in radioactive elements. In this research, the uranium exploration data were first organized, filtered and classified and then the frequency distribution tables and histograms were drawn. After drawing the histograms, the statistical parameters for radioactive elements were calculated. The separation of anomaly populations was done on the basis of distribution around mean value, that is, the resulting mean, mean + 1SD, mean + 2SD, and mean + 3SD were assumed to equal to background, threshold value, the possible anomaly and the probable anomaly, respectively. In the end, representative maps of anomalies and separation of anomaly populations from the background were presented based on classical statistical calculations.
Using airborne radiometric geophysical data, one can easily investigate a wide region in a short time and with little cost to finally find areas that are rich in radioactive elements. In this research, the uranium exploration data were first organized, filtered and classified and then the frequency distribution tables and histograms were drawn. After drawing the histograms, the statistical parameters for radioactive elements were calculated. The separation of anomaly populations was done on the basis of distribution around mean value, that is, the resulting mean, mean + 1SD, mean + 2SD, and mean + 3SD were assumed to equal to background, threshold value, the possible anomaly and the probable anomaly, respectively. In the end, representative maps of anomalies and separation of anomaly populations from the background were presented based on classical statistical calculations.