期刊文献+

Regional Hypsometric Analysis of the Jordan Rift Drainage Basins (Jordan) Using Geographic Information System 被引量:2

Regional Hypsometric Analysis of the Jordan Rift Drainage Basins (Jordan) Using Geographic Information System
下载PDF
导出
摘要 This research is intended to assess the regional pattern of hypsometric curves (HCs) and hypsometric integrals (HIs) for the watersheds draining into the Jordan Rift (River Jordan, the Dead Sea, and Wadi Araba watersheds). Hypsometric analysis was performed on 22 drainage basins using ASTER DEM (30 m resolution) and GIS. The area-elevation ratio method was utilized to extract the hypsometric integral values within a GIS environment. A prominent variation exists in the HC shapes and HI values. The highest hypsometric values are found for the Dead Sea ( = 0.87) and River Jordan ( = 0.77) watersheds. Whereas the lowest values ( = 0.51) characterized Wadi Araba catchments, except Wadi Nukhaileh (lower Wadi Araba) which yields an HI value of 0.26. Seventeen HCs pertained to the River Jordan and the Dead Sea watersheds evince remarkably upward convex shapes indicating that such drainage basins are less eroded, and at the youth-stage of the geomorphic cycle of erosion. Catchments draining to Wadi Araba are of intermediate HI values (0.41 - 0.58) which are associated with a balance, or dynamic equilibrium between erosion and tectonic processes. Accordingly, they correspond to a late mature stage of geomorphic development. Additionally, Wadi Nukhaileh yields the lowest HI value (0.26) and is associated with highly eroded terrain of late mature geomorphic evolution, approaching an old stage therefore, with distorted concave upward curves. High HI values indicate that these watersheds have been subjected to tectonic uplift, down faulting of the Rift and intense rejuvenation. Differences in HI values can be attributed to disparity in tectonic uplift rate, base level heights, and mean heights of the River Jordan watersheds, the Dead Sea and Wadi Araba watersheds, and variation in lithology, which caused noticeable differences in rejuvenation processes, and channel incision. Regression analysis reveals that R<sup>2</sup> values which represent the degree of control of driving parameters on HI, are positive and generally low (ranging from 0.026 to 0.224) except for the height of base level (m) parameter which contributes 0.42 (significant at 0.1% level). Such results mean that the height of base level has a significant at 0.1% level. It is obvious that the most crucial driving morphometric factor influencing HI values of the Jordan Rift drainage basins, is the height of base level (m). This research is intended to assess the regional pattern of hypsometric curves (HCs) and hypsometric integrals (HIs) for the watersheds draining into the Jordan Rift (River Jordan, the Dead Sea, and Wadi Araba watersheds). Hypsometric analysis was performed on 22 drainage basins using ASTER DEM (30 m resolution) and GIS. The area-elevation ratio method was utilized to extract the hypsometric integral values within a GIS environment. A prominent variation exists in the HC shapes and HI values. The highest hypsometric values are found for the Dead Sea ( = 0.87) and River Jordan ( = 0.77) watersheds. Whereas the lowest values ( = 0.51) characterized Wadi Araba catchments, except Wadi Nukhaileh (lower Wadi Araba) which yields an HI value of 0.26. Seventeen HCs pertained to the River Jordan and the Dead Sea watersheds evince remarkably upward convex shapes indicating that such drainage basins are less eroded, and at the youth-stage of the geomorphic cycle of erosion. Catchments draining to Wadi Araba are of intermediate HI values (0.41 - 0.58) which are associated with a balance, or dynamic equilibrium between erosion and tectonic processes. Accordingly, they correspond to a late mature stage of geomorphic development. Additionally, Wadi Nukhaileh yields the lowest HI value (0.26) and is associated with highly eroded terrain of late mature geomorphic evolution, approaching an old stage therefore, with distorted concave upward curves. High HI values indicate that these watersheds have been subjected to tectonic uplift, down faulting of the Rift and intense rejuvenation. Differences in HI values can be attributed to disparity in tectonic uplift rate, base level heights, and mean heights of the River Jordan watersheds, the Dead Sea and Wadi Araba watersheds, and variation in lithology, which caused noticeable differences in rejuvenation processes, and channel incision. Regression analysis reveals that R<sup>2</sup> values which represent the degree of control of driving parameters on HI, are positive and generally low (ranging from 0.026 to 0.224) except for the height of base level (m) parameter which contributes 0.42 (significant at 0.1% level). Such results mean that the height of base level has a significant at 0.1% level. It is obvious that the most crucial driving morphometric factor influencing HI values of the Jordan Rift drainage basins, is the height of base level (m).
作者 Yahya Farhan Rami Mousa Arij Dagarah Durgham Shtaya Yahya Farhan;Rami Mousa;Arij Dagarah;Durgham Shtaya(Department of Geography, University of Jordan, Amman, Jordan)
出处 《Open Journal of Geology》 2016年第10期1312-1343,共32页 地质学期刊(英文)
关键词 Hypsometric Analysis Tectonic Activity GIS ASTER DEM Regression Analysis Jordan Rift Hypsometric Analysis Tectonic Activity GIS ASTER DEM Regression Analysis Jordan Rift
  • 相关文献

参考文献3

共引文献9

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部