摘要
Evapotranspiration is one the most important parameters in the hydrological cycle and plays a significant role in energy balance of the earth’s surface. Traditional field-based measurements approaches for calculation of daily evapotranspiration are valid only for local scales. Using advanced remote sensing technology, the spatial distribution of evapotranspiration may now be quantified more accurately. At the present study, daily evapotranspiration is estimated using Landsat 8 datasets based on the Surface Energy Balance System (SEBS) algorithm over the Zayanderud Dam area in central Iran. For this purpose, three Landsat 8 datasets in the years 2013, 2014 and 2015 covering the study area were atmospherically corrected using the FLAASH approach. The biophysical parameters of the earth’s surface for SEBS algorithm, such as normalized difference vegetation index (NDVI), Leaf area index (LAI), fractional vegetation cover (FC) were extracted from the visible and near infrared bands and land surface temperature was computed from thermal bands the Landsat 8 datasets. The spatial distribution of daily ET was provided separately for each year. In addition to the SEBS algorithm, the Penman-Monteith method was applied to estimate the daily ET from meteorological datasets which was obtained from two synoptic stations within the study area. Finally, the simulated daily ET values from both SEBS and Penman-Monteith method were compared to observed values obtained from a lysimeter within the study area. Although the estimated results from both SEBS and Penman-Monteith show a strong correlation with the observed values, the derived ET maps and following analysis demonstrated SEBS has higher accuracy and strength in estimation of daily ET in Zayanderud Dam region.
Evapotranspiration is one the most important parameters in the hydrological cycle and plays a significant role in energy balance of the earth’s surface. Traditional field-based measurements approaches for calculation of daily evapotranspiration are valid only for local scales. Using advanced remote sensing technology, the spatial distribution of evapotranspiration may now be quantified more accurately. At the present study, daily evapotranspiration is estimated using Landsat 8 datasets based on the Surface Energy Balance System (SEBS) algorithm over the Zayanderud Dam area in central Iran. For this purpose, three Landsat 8 datasets in the years 2013, 2014 and 2015 covering the study area were atmospherically corrected using the FLAASH approach. The biophysical parameters of the earth’s surface for SEBS algorithm, such as normalized difference vegetation index (NDVI), Leaf area index (LAI), fractional vegetation cover (FC) were extracted from the visible and near infrared bands and land surface temperature was computed from thermal bands the Landsat 8 datasets. The spatial distribution of daily ET was provided separately for each year. In addition to the SEBS algorithm, the Penman-Monteith method was applied to estimate the daily ET from meteorological datasets which was obtained from two synoptic stations within the study area. Finally, the simulated daily ET values from both SEBS and Penman-Monteith method were compared to observed values obtained from a lysimeter within the study area. Although the estimated results from both SEBS and Penman-Monteith show a strong correlation with the observed values, the derived ET maps and following analysis demonstrated SEBS has higher accuracy and strength in estimation of daily ET in Zayanderud Dam region.