摘要
By focusing on impact-triggered phenomena having occurred synchronously with or shortly prior to formation boundaries, two glass sand pits (Upper Maastrichtian) located near Uhry, North Germany have been studied in regard to the K/T boundary throughout the last 40 years during progressive exploitation of glass sand. However, a clastic sequence of sand, mass flow and pelite deposited in a deep channel of about 10 - 12 m in depth, eroded into the glass sand, surprisingly shows an Upper Eocene/Lower Oligocene age, well defined by a Dinocyst assemblage (Chiripteridium c. galea, Enneado cysta arcuata, Areoligera tauloma = D 12na - D 14na) from a 0.5 meter thick pelite that marks the Rupelian transgression within an estuarian system running northwest/southeastward. The section exposes a high energy mass flow and formerly solid frozen angular glass sand blocks of up to a meter-size embedded in fluvial sand of the channel base. Furthermore, erratic clastics of up to 0.4 meter in diameter appear at the pelite base. The “unusual” Dinocyst assemblage is of autochthonous origin and comprises the fresh water alga Pediastrum Kawraiskyias indicator for cold climate, hitherto only known from Quaternary. Missing pollen indicate a vegetation-less hinterland. Thus, there cannot be any doubt that around the E/O b. at least one “rare event” has happened as verified by short tremendous flooding and significant temperature fall (“cosmic winter”). According to the attitude of the global impact scientific community, these phenomena belong to the spectrum of “indirect effects” of major impacts. Radiometric ages of relevant major impact events underline that both impact craters of Popigai, Russia (100 Kilometer in diameter, 35.7 Ma) and Chesabreake, USA (85 Kilometer in diameter, 35.5 Ma) happened shortly before the E/O b.(33.75 Ma). In addition, a tektite strewn field along the eastern coast of the USA and micro-tektites (Gulf of Mexico, Caribbean Sea, Barbados) yield an age of ~34.4 Ma, close to the E/O b. Consequently, there does exist an extremely high probability that Uhry site hosts impact-triggered products at the E/O b. It should be stressed that the Upper Eocene Epoch comprises an amazingly high number of impact events during the time-span 34.2 - 37.0 Ma.
By focusing on impact-triggered phenomena having occurred synchronously with or shortly prior to formation boundaries, two glass sand pits (Upper Maastrichtian) located near Uhry, North Germany have been studied in regard to the K/T boundary throughout the last 40 years during progressive exploitation of glass sand. However, a clastic sequence of sand, mass flow and pelite deposited in a deep channel of about 10 - 12 m in depth, eroded into the glass sand, surprisingly shows an Upper Eocene/Lower Oligocene age, well defined by a Dinocyst assemblage (Chiripteridium c. galea, Enneado cysta arcuata, Areoligera tauloma = D 12na - D 14na) from a 0.5 meter thick pelite that marks the Rupelian transgression within an estuarian system running northwest/southeastward. The section exposes a high energy mass flow and formerly solid frozen angular glass sand blocks of up to a meter-size embedded in fluvial sand of the channel base. Furthermore, erratic clastics of up to 0.4 meter in diameter appear at the pelite base. The “unusual” Dinocyst assemblage is of autochthonous origin and comprises the fresh water alga Pediastrum Kawraiskyias indicator for cold climate, hitherto only known from Quaternary. Missing pollen indicate a vegetation-less hinterland. Thus, there cannot be any doubt that around the E/O b. at least one “rare event” has happened as verified by short tremendous flooding and significant temperature fall (“cosmic winter”). According to the attitude of the global impact scientific community, these phenomena belong to the spectrum of “indirect effects” of major impacts. Radiometric ages of relevant major impact events underline that both impact craters of Popigai, Russia (100 Kilometer in diameter, 35.7 Ma) and Chesabreake, USA (85 Kilometer in diameter, 35.5 Ma) happened shortly before the E/O b.(33.75 Ma). In addition, a tektite strewn field along the eastern coast of the USA and micro-tektites (Gulf of Mexico, Caribbean Sea, Barbados) yield an age of ~34.4 Ma, close to the E/O b. Consequently, there does exist an extremely high probability that Uhry site hosts impact-triggered products at the E/O b. It should be stressed that the Upper Eocene Epoch comprises an amazingly high number of impact events during the time-span 34.2 - 37.0 Ma.