期刊文献+

Study on Flow Unit of Heavy Oil Bottom Water Reservoir with Over-Limited Thickness in Offshore Oilfield

Study on Flow Unit of Heavy Oil Bottom Water Reservoir with Over-Limited Thickness in Offshore Oilfield
下载PDF
导出
摘要 The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water. The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water.
出处 《Open Journal of Geology》 2019年第9期507-515,共9页 地质学期刊(英文)
关键词 Over-Limited THICK Layer INVERSION of Tuned Amplitude Frequency DIVISION RGB Fusion Water-Oil Thickness Ratio Flow Unit Over-Limited Thick Layer Inversion of Tuned Amplitude Frequency Division RGB Fusion Water-Oil Thickness Ratio Flow Unit
  • 相关文献

参考文献7

二级参考文献85

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部