期刊文献+

A Review on the Study of Continental Drift and Numerical Simulation Associated with the Early Earth Core-Magma Angular Momentum Exchange

A Review on the Study of Continental Drift and Numerical Simulation Associated with the Early Earth Core-Magma Angular Momentum Exchange
下载PDF
导出
摘要 According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model. According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model.
作者 Weihong Qian Weihong Qian(School of Physics, Peking University, Beijing, China;Guangzhou Institute of Tropical and Marine Meteorology, CMA, Guangzhou, China)
出处 《Open Journal of Geology》 2023年第9期980-1006,共27页 地质学期刊(英文)
关键词 Continental Drift Driving Force DIRECTIONALITY Numerical Model Angular Momentum Exchange Continental Drift Driving Force Directionality Numerical Model Angular Momentum Exchange
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部