期刊文献+

Model for Predicting the Transport and Dispersal of Contaminants Incoming with Submarine Groundwater: Case Study for the Southwestern Taiwan Coastal Zone

Model for Predicting the Transport and Dispersal of Contaminants Incoming with Submarine Groundwater: Case Study for the Southwestern Taiwan Coastal Zone
下载PDF
导出
摘要 As was recognized recently, the submarine groundwater transports a significant amount of various contaminants into the coastal ocean. An assessment of the impact of intruded pollutants in the coastal ecosystems requires understanding fate of the pollutants and processes of their dispersal in ambient waters. In this paper, we proposed a 3-D coupled ocean circulation/particle-tracking model for predicting the transport and dispersal of pollution-containing groundwater discharged into a coastal environment of the southwestern Taiwan. The particle-tracking model takes currents and turbulent diffusivities predetermined by the ocean circulation model and uses the Lagrangian approach to predict the motion of individual droplets, the sum of which constitutes a contaminant plume in result of discharge of contaminant-rich submarine groundwater. The ocean circulation model was forced by tides and seasonal favorable winds for the south-western coast of Taiwan. The initialization of the coupled model was set using field data obtained in 2009 on the Ping-tung shelf where shallow aquifer seepages were discovered. Several types of numerical experiment scenarios were set up to elucidate the transport and dispersal of conservative and nonconservative (nitrate) contaminants in the shallow coastal zone. The comparison of obtained numerical results with observations performed by other researches was discussed. As was recognized recently, the submarine groundwater transports a significant amount of various contaminants into the coastal ocean. An assessment of the impact of intruded pollutants in the coastal ecosystems requires understanding fate of the pollutants and processes of their dispersal in ambient waters. In this paper, we proposed a 3-D coupled ocean circulation/particle-tracking model for predicting the transport and dispersal of pollution-containing groundwater discharged into a coastal environment of the southwestern Taiwan. The particle-tracking model takes currents and turbulent diffusivities predetermined by the ocean circulation model and uses the Lagrangian approach to predict the motion of individual droplets, the sum of which constitutes a contaminant plume in result of discharge of contaminant-rich submarine groundwater. The ocean circulation model was forced by tides and seasonal favorable winds for the south-western coast of Taiwan. The initialization of the coupled model was set using field data obtained in 2009 on the Ping-tung shelf where shallow aquifer seepages were discovered. Several types of numerical experiment scenarios were set up to elucidate the transport and dispersal of conservative and nonconservative (nitrate) contaminants in the shallow coastal zone. The comparison of obtained numerical results with observations performed by other researches was discussed.
出处 《Open Journal of Marine Science》 2012年第2期70-83,共14页 海洋科学期刊(英文)
关键词 SUBMARINE GROUNDWATER Coastal Zone NITRATE Eulerian-Lagrangian MODEL TAIWAN Submarine Groundwater Coastal Zone Nitrate Eulerian-Lagrangian Model Taiwan
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部