摘要
Coastal pollution assessment is a pressing matter as the anthropogenic pressure continues to increase worldwide. A leading approach to assess coastal pollution is using bioindicators. However, identifying species is time-consuming and demands profound morphological knowledge. Our goal was to find the meiobenthic composition in each pollution level. By utilizing the meiobenthic assemblage’s ratios, we will be able to indicate the pollution level. We examined the meiobenthos distribution at three sites exposed to a pollution gradient. We quantified the changes in the fauna assemblage in the community phylum level, focusing on nematodes and foraminifera (90% of the total population). Over 400 samples were examined, covering an annual seasonal cycle. Nematodes population dominated in the polluted coast. Nematodes density increased with the pollution level, up to seemingly harmful levels of pollution. In contradiction, the foraminifera flourished in the control site and exhibited an inverse relationship to the nematodes. We witnessed drastic changes in the entire meiobenthic population in the winter, which we speculate that originated from winter turbulences. We suggest that nematodes-foraminifers’ population ratios may be utilized as bioindicators for assessing coast intertidal zone pollution levels.
Coastal pollution assessment is a pressing matter as the anthropogenic pressure continues to increase worldwide. A leading approach to assess coastal pollution is using bioindicators. However, identifying species is time-consuming and demands profound morphological knowledge. Our goal was to find the meiobenthic composition in each pollution level. By utilizing the meiobenthic assemblage’s ratios, we will be able to indicate the pollution level. We examined the meiobenthos distribution at three sites exposed to a pollution gradient. We quantified the changes in the fauna assemblage in the community phylum level, focusing on nematodes and foraminifera (90% of the total population). Over 400 samples were examined, covering an annual seasonal cycle. Nematodes population dominated in the polluted coast. Nematodes density increased with the pollution level, up to seemingly harmful levels of pollution. In contradiction, the foraminifera flourished in the control site and exhibited an inverse relationship to the nematodes. We witnessed drastic changes in the entire meiobenthic population in the winter, which we speculate that originated from winter turbulences. We suggest that nematodes-foraminifers’ population ratios may be utilized as bioindicators for assessing coast intertidal zone pollution levels.