摘要
Marine microplastic pollution is becoming more visible and pervasive in various aquatic environments and species, including those intended for human consumption. The present study evaluated the occurrence of suspended microplastics in surface waters, the water column, and bivalves, such as Perna viridis and Atrina pectinata in Sorsogon bay. Microplastics were detected in all sampling sites and bivalve tissue samples. Surface water (0 m) and water column (5 m) samples taken from six sampling stations representing spatial consideration of the bay showed an average of 5.55 ± 1.74 items/m3</sup> (range: 2.27 - 1.66 items/m3</sup>) and 5.80 ± 1.94 items/m3</sup> (range: 1.93 - 14.55 items/m3</sup>), respectively. The mean microplastic number in farmed mussels and wild pen shells collected around the bay varied from 0.31 - 2.50 items/individual for mussels and 0.93 - 4.27 items/individual for pen shells. FTIR spectroscopy revealed that microplastics made up 55% of the debris analyzed, with an additional 45% natural materials, including aluminum silicate, cellulose, and chitin. It is becoming increasingly evident that Sorsogon Bay is not exempt from this paradigm. Hopefully, this will drive the community to support measures to address this issue, such as social perception and behavioral change.
Marine microplastic pollution is becoming more visible and pervasive in various aquatic environments and species, including those intended for human consumption. The present study evaluated the occurrence of suspended microplastics in surface waters, the water column, and bivalves, such as Perna viridis and Atrina pectinata in Sorsogon bay. Microplastics were detected in all sampling sites and bivalve tissue samples. Surface water (0 m) and water column (5 m) samples taken from six sampling stations representing spatial consideration of the bay showed an average of 5.55 ± 1.74 items/m3</sup> (range: 2.27 - 1.66 items/m3</sup>) and 5.80 ± 1.94 items/m3</sup> (range: 1.93 - 14.55 items/m3</sup>), respectively. The mean microplastic number in farmed mussels and wild pen shells collected around the bay varied from 0.31 - 2.50 items/individual for mussels and 0.93 - 4.27 items/individual for pen shells. FTIR spectroscopy revealed that microplastics made up 55% of the debris analyzed, with an additional 45% natural materials, including aluminum silicate, cellulose, and chitin. It is becoming increasingly evident that Sorsogon Bay is not exempt from this paradigm. Hopefully, this will drive the community to support measures to address this issue, such as social perception and behavioral change.