期刊文献+

Three-Dimensional Geologic Modeling and Groundwater Flow Modeling above a CO2 Sequestration Test Site

Three-Dimensional Geologic Modeling and Groundwater Flow Modeling above a CO2 Sequestration Test Site
下载PDF
导出
摘要 As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurface 3-D modeling and groundwater flow modeling were completed as a component of a CO<sub>2</sub> sequestration feasibility study in the city of Decatur, Illinois. The Decatur Archer Daniels Midland Company Ethanol Plant (ADM) serves as the injection site for a CO<sub>2</sub> sequestration project within a deep saline reservoir. Petrel was successfully used to model the glacial deposits in the area. The 3-D geologic model shows the Peoria Silt, Wedron Formation, and Cahokia Formation at the surface with the Wedron Formation holding up the steep slopes along the east and west banks of Lake Decatur. The groundwater flow model outlined the location of a local groundwater divide and showed flow from the injection site would flow towards Lake Decatur, reaching the lake in 80 days. As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurface 3-D modeling and groundwater flow modeling were completed as a component of a CO<sub>2</sub> sequestration feasibility study in the city of Decatur, Illinois. The Decatur Archer Daniels Midland Company Ethanol Plant (ADM) serves as the injection site for a CO<sub>2</sub> sequestration project within a deep saline reservoir. Petrel was successfully used to model the glacial deposits in the area. The 3-D geologic model shows the Peoria Silt, Wedron Formation, and Cahokia Formation at the surface with the Wedron Formation holding up the steep slopes along the east and west banks of Lake Decatur. The groundwater flow model outlined the location of a local groundwater divide and showed flow from the injection site would flow towards Lake Decatur, reaching the lake in 80 days.
作者 Erin Carlock Eric W. Peterson David H. Malone Erin Carlock;Eric W. Peterson;David H. Malone(Department Geography-Geology, Illinois State University, Normal, IL, USA)
出处 《Open Journal of Modern Hydrology》 2016年第3期182-193,共12页 现代水文学期刊(英文)
关键词 Carbon Sequestration PETREL HYDROGEOLOGY MODFLOW Glacial Sediments Carbon Sequestration Petrel Hydrogeology MODFLOW Glacial Sediments
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部