期刊文献+

Morphological and Physico-Chemical Characteristics and Classification of Vertisol Developed on Deltaic Plain

下载PDF
导出
摘要 The name of Vertisol is derived from Latin “vertere” meaning to invert. This case restricts development of soil horizons in profile. These soils have the capacity to swell and shrink, inducing cracks in the upper parts of the soil and distinctive soil structure throughout the soil. The formation of these specific features are caused by a heavy texture, a dominance of swelling clay in the fine fraction and marked changes in moisture content. The swell-shrink behavior is attributed to the wetting and drying of the soil mass. In this study, morphology, physico-chemical characteristics and classification of vertisols that were formed on alluvial delta plains, were investigated. Those soils formed on the Bafra Plain found in the K?z?l?rmak Delta and located in the central Black Sea region of Turkey. All studied Vertisols are characterised by a dark colour in surface soil, a heavy clayey texture, hardpan formation under top soil (high bulk density a high compaction) and very high COLE values. In addition, they have deep wide-opened desiccation cracks at the surface, slickensides at the middle part of the profiles and a poor differentiation of their horizons. Physico-chemically, the studied soils are slightly basic to very basic, non-saline and poor in organic matter, which is slightly higher in the surface horizon. In addition, cation exchange capacity, sum of exchangeable bases and base saturation of soils are very high. On the basis of morphological and physicochemical analysis, soil profiles were classified as Sodic Haplustert, Typic Calciaquert, Sodic Calciustert according to Soil Taxonomy (Soil Survey Staff, 1975 and 1999) and as Sodic Vertisol and Calcic Vertisol according to FAO/ISRIC (2006) classification systems. The name of Vertisol is derived from Latin “vertere” meaning to invert. This case restricts development of soil horizons in profile. These soils have the capacity to swell and shrink, inducing cracks in the upper parts of the soil and distinctive soil structure throughout the soil. The formation of these specific features are caused by a heavy texture, a dominance of swelling clay in the fine fraction and marked changes in moisture content. The swell-shrink behavior is attributed to the wetting and drying of the soil mass. In this study, morphology, physico-chemical characteristics and classification of vertisols that were formed on alluvial delta plains, were investigated. Those soils formed on the Bafra Plain found in the K?z?l?rmak Delta and located in the central Black Sea region of Turkey. All studied Vertisols are characterised by a dark colour in surface soil, a heavy clayey texture, hardpan formation under top soil (high bulk density a high compaction) and very high COLE values. In addition, they have deep wide-opened desiccation cracks at the surface, slickensides at the middle part of the profiles and a poor differentiation of their horizons. Physico-chemically, the studied soils are slightly basic to very basic, non-saline and poor in organic matter, which is slightly higher in the surface horizon. In addition, cation exchange capacity, sum of exchangeable bases and base saturation of soils are very high. On the basis of morphological and physicochemical analysis, soil profiles were classified as Sodic Haplustert, Typic Calciaquert, Sodic Calciustert according to Soil Taxonomy (Soil Survey Staff, 1975 and 1999) and as Sodic Vertisol and Calcic Vertisol according to FAO/ISRIC (2006) classification systems.
出处 《Open Journal of Soil Science》 2012年第1期20-27,共8页 土壤科学期刊(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部