摘要
Installing tile drainage facilitates early planting and field operations, and tiling has tremendously increased in the Red River Valley (RRV) due to recent wet cycles. This experiment studied tile drainage and N-fertilizer management effects on N availability, N losses, and yields of corn (Zea mays L.) and sugarbeet (Beta vulgaris L.) in a naturally poorly-drained Fargo soil during the 2012-2013 growing seasons. Regardless of drainage, applying 146 kg N ha-1 with nitrapyrin resulted similar soil N availability to 180 kg N ha-1 without nitrapyrin in sugarbeet in both years. In corn, application of nitrapyrin resulted either higher or similar soil N levels to split-N application. In 2013, application of urea alone increased soil N availability during the early corn growing season under the undrained condition, whereas nitrapyrin delayed N release in the tile-drained soils. Corn and sugarbeet yields averaged 7.4 and 47.0 Mg·ha-1 in 2012, and averaged 8.3 and 38.3 Mg·ha-1 in 2013, respectively, with no significant differences among N-sources. However, corn yield increased on an average by 27.6% with N-fertilizer application over unfertilized control in 2013. In 2012, sugarbeet root impurity (% sucrose loss to molasses) increased by 13.8% and 17.2% with 146 kg N ha-1 plus nitrapyrin and 180 kg N ha-1 treatments, respectively, compared to unfertilized control. Besides, higher N rates were usually associated with greater daily soil N2O emissions, with the maximum flux of 105 g N2O-N ha-1·d-1 recorded under corn. Addition of fertilizer-N increased NH3 volatilization losses up to 1.9% and 0.5% of the applied-N in corn and sugarbeet, respectively. Tile drainage influenced soil N availability more than crop yield during two years of study. Nitrogen management can have pronounced effects on N availability and losses. A long-term study is needed to investigate the fertilizer-N use efficiency of crops under tile drainage condition.
Installing tile drainage facilitates early planting and field operations, and tiling has tremendously increased in the Red River Valley (RRV) due to recent wet cycles. This experiment studied tile drainage and N-fertilizer management effects on N availability, N losses, and yields of corn (Zea mays L.) and sugarbeet (Beta vulgaris L.) in a naturally poorly-drained Fargo soil during the 2012-2013 growing seasons. Regardless of drainage, applying 146 kg N ha-1 with nitrapyrin resulted similar soil N availability to 180 kg N ha-1 without nitrapyrin in sugarbeet in both years. In corn, application of nitrapyrin resulted either higher or similar soil N levels to split-N application. In 2013, application of urea alone increased soil N availability during the early corn growing season under the undrained condition, whereas nitrapyrin delayed N release in the tile-drained soils. Corn and sugarbeet yields averaged 7.4 and 47.0 Mg·ha-1 in 2012, and averaged 8.3 and 38.3 Mg·ha-1 in 2013, respectively, with no significant differences among N-sources. However, corn yield increased on an average by 27.6% with N-fertilizer application over unfertilized control in 2013. In 2012, sugarbeet root impurity (% sucrose loss to molasses) increased by 13.8% and 17.2% with 146 kg N ha-1 plus nitrapyrin and 180 kg N ha-1 treatments, respectively, compared to unfertilized control. Besides, higher N rates were usually associated with greater daily soil N2O emissions, with the maximum flux of 105 g N2O-N ha-1·d-1 recorded under corn. Addition of fertilizer-N increased NH3 volatilization losses up to 1.9% and 0.5% of the applied-N in corn and sugarbeet, respectively. Tile drainage influenced soil N availability more than crop yield during two years of study. Nitrogen management can have pronounced effects on N availability and losses. A long-term study is needed to investigate the fertilizer-N use efficiency of crops under tile drainage condition.