期刊文献+

Tile Drainage and Nitrogen Fertilizer Management Influences on Nitrogen Availability, Losses, and Crop Yields 被引量:1

Tile Drainage and Nitrogen Fertilizer Management Influences on Nitrogen Availability, Losses, and Crop Yields
下载PDF
导出
摘要 Installing tile drainage facilitates early planting and field operations, and tiling has tremendously increased in the Red River Valley (RRV) due to recent wet cycles. This experiment studied tile drainage and N-fertilizer management effects on N availability, N losses, and yields of corn (Zea mays L.) and sugarbeet (Beta vulgaris L.) in a naturally poorly-drained Fargo soil during the 2012-2013 growing seasons. Regardless of drainage, applying 146 kg N ha-1 with nitrapyrin resulted similar soil N availability to 180 kg N ha-1 without nitrapyrin in sugarbeet in both years. In corn, application of nitrapyrin resulted either higher or similar soil N levels to split-N application. In 2013, application of urea alone increased soil N availability during the early corn growing season under the undrained condition, whereas nitrapyrin delayed N release in the tile-drained soils. Corn and sugarbeet yields averaged 7.4 and 47.0 Mg·ha-1 in 2012, and averaged 8.3 and 38.3 Mg·ha-1 in 2013, respectively, with no significant differences among N-sources. However, corn yield increased on an average by 27.6% with N-fertilizer application over unfertilized control in 2013. In 2012, sugarbeet root impurity (% sucrose loss to molasses) increased by 13.8% and 17.2% with 146 kg N ha-1 plus nitrapyrin and 180 kg N ha-1 treatments, respectively, compared to unfertilized control. Besides, higher N rates were usually associated with greater daily soil N2O emissions, with the maximum flux of 105 g N2O-N ha-1·d-1 recorded under corn. Addition of fertilizer-N increased NH3 volatilization losses up to 1.9% and 0.5% of the applied-N in corn and sugarbeet, respectively. Tile drainage influenced soil N availability more than crop yield during two years of study. Nitrogen management can have pronounced effects on N availability and losses. A long-term study is needed to investigate the fertilizer-N use efficiency of crops under tile drainage condition. Installing tile drainage facilitates early planting and field operations, and tiling has tremendously increased in the Red River Valley (RRV) due to recent wet cycles. This experiment studied tile drainage and N-fertilizer management effects on N availability, N losses, and yields of corn (Zea mays L.) and sugarbeet (Beta vulgaris L.) in a naturally poorly-drained Fargo soil during the 2012-2013 growing seasons. Regardless of drainage, applying 146 kg N ha-1 with nitrapyrin resulted similar soil N availability to 180 kg N ha-1 without nitrapyrin in sugarbeet in both years. In corn, application of nitrapyrin resulted either higher or similar soil N levels to split-N application. In 2013, application of urea alone increased soil N availability during the early corn growing season under the undrained condition, whereas nitrapyrin delayed N release in the tile-drained soils. Corn and sugarbeet yields averaged 7.4 and 47.0 Mg·ha-1 in 2012, and averaged 8.3 and 38.3 Mg·ha-1 in 2013, respectively, with no significant differences among N-sources. However, corn yield increased on an average by 27.6% with N-fertilizer application over unfertilized control in 2013. In 2012, sugarbeet root impurity (% sucrose loss to molasses) increased by 13.8% and 17.2% with 146 kg N ha-1 plus nitrapyrin and 180 kg N ha-1 treatments, respectively, compared to unfertilized control. Besides, higher N rates were usually associated with greater daily soil N2O emissions, with the maximum flux of 105 g N2O-N ha-1·d-1 recorded under corn. Addition of fertilizer-N increased NH3 volatilization losses up to 1.9% and 0.5% of the applied-N in corn and sugarbeet, respectively. Tile drainage influenced soil N availability more than crop yield during two years of study. Nitrogen management can have pronounced effects on N availability and losses. A long-term study is needed to investigate the fertilizer-N use efficiency of crops under tile drainage condition.
出处 《Open Journal of Soil Science》 2015年第10期211-226,共16页 土壤科学期刊(英文)
关键词 SUBSURFACE Drainage Nitrogen Nitrous Oxide Ammonia VOLATILIZATION NITRATE LEACHING Subsurface Drainage Nitrogen Nitrous Oxide Ammonia Volatilization Nitrate Leaching
  • 相关文献

同被引文献26

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部