期刊文献+

Root-Zone Soil Water Balance and Sunflower Yield under Deficit Irrigated in Zambia

Root-Zone Soil Water Balance and Sunflower Yield under Deficit Irrigated in Zambia
下载PDF
导出
摘要 The study was conducted at the University of Zambia, Research Field Station, Lusaka, Zambia to evaluate the root zone soil water balance under full, and deficit irrigated sunflower. The specific objectives were: 1) to assess the sunflower growth and yield under varying irrigation water regimes;2) to evaluate the root-zone water balance;and 3) to evaluate the water use efficiency of sunflower. Sunflower (Helianthus annuus, var Milika) was planted in a Randomized Complete Block Design (RCBD) with four irrigated water regimes in four replications. The treatments comprised: treatment (T1) = 30% ETc;treatment (T2) = 54% ETc;treatment (T3) = 65% ETc;and treatment (T4) = 100% ETc. The sunflower crop was irrigated on a weekly irrigation schedule using sprinklers. The measured parameters included: weather data, soil moisture profiles, growth stages (emergence, flowering, maturity), above-ground biomass, and grain yield. The results of the study showed that growth parameter (biomass and seed yield) decreased with a decrease in applied irrigation water. The sunflower seed yield varied from 0.22 to 1.40-ton·ha-1 with an average yield of 0.81-ton·ha-1. The highest grain yield was obtained under treatment (T4), and the least grain in yield harvest was at treatment (T1). The statistical analysis showed significant differences in seed yield among the treatments. The treatments (T1 and T2) were not significantly different (p > 0.05). These results showed that when water deficit was set at 65% and 100% ETc and uniformly distributed throughout the sunflower growth, there were no significant differences in biomass, stover and seed yield. In literature, the allowable soil moisture depletion factor for irrigation scheduling of sunflower is set at 45%. The yield components decreased as irrigation levels decreased for each irrigation interval. The 65% ETc treatment could be recommended for sunflower irrigated in semi-arid regions and be used as a good basis for improved irrigation strategy development under water stressed environment. The study was conducted at the University of Zambia, Research Field Station, Lusaka, Zambia to evaluate the root zone soil water balance under full, and deficit irrigated sunflower. The specific objectives were: 1) to assess the sunflower growth and yield under varying irrigation water regimes;2) to evaluate the root-zone water balance;and 3) to evaluate the water use efficiency of sunflower. Sunflower (Helianthus annuus, var Milika) was planted in a Randomized Complete Block Design (RCBD) with four irrigated water regimes in four replications. The treatments comprised: treatment (T1) = 30% ETc;treatment (T2) = 54% ETc;treatment (T3) = 65% ETc;and treatment (T4) = 100% ETc. The sunflower crop was irrigated on a weekly irrigation schedule using sprinklers. The measured parameters included: weather data, soil moisture profiles, growth stages (emergence, flowering, maturity), above-ground biomass, and grain yield. The results of the study showed that growth parameter (biomass and seed yield) decreased with a decrease in applied irrigation water. The sunflower seed yield varied from 0.22 to 1.40-ton·ha-1 with an average yield of 0.81-ton·ha-1. The highest grain yield was obtained under treatment (T4), and the least grain in yield harvest was at treatment (T1). The statistical analysis showed significant differences in seed yield among the treatments. The treatments (T1 and T2) were not significantly different (p > 0.05). These results showed that when water deficit was set at 65% and 100% ETc and uniformly distributed throughout the sunflower growth, there were no significant differences in biomass, stover and seed yield. In literature, the allowable soil moisture depletion factor for irrigation scheduling of sunflower is set at 45%. The yield components decreased as irrigation levels decreased for each irrigation interval. The 65% ETc treatment could be recommended for sunflower irrigated in semi-arid regions and be used as a good basis for improved irrigation strategy development under water stressed environment.
出处 《Open Journal of Soil Science》 2018年第1期61-73,共13页 土壤科学期刊(英文)
关键词 CROP WATER Requirements WATER Use Efficiency SPRINKLER IRRIGATION WATER Productivity Crop Water Requirements Water Use Efficiency Sprinkler Irrigation Water Productivity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部