摘要
This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that load models can significantly affect the optimal location and sizing of DG resources in distribution systems. The proposed multi-objective function to be optimized includes a short circuit level parameter to represent the protective device requirements. The proposed function also considers a wide range of technical issues such as active and reactive power losses of the system, the voltage profile, the line loading and the MVA intake by the grid. The optimization technique based on particle swarm optimization (PSO) is introduced. The analysis of continuation power flow to determine the effect of DG units on the most sensitive buses to voltage collapse is carried out. The proposed algorithm is tested using the 38-bus radial system and the IEEE 30-bus meshed system. The results show the effectiveness of the proposed algorithm.
This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that load models can significantly affect the optimal location and sizing of DG resources in distribution systems. The proposed multi-objective function to be optimized includes a short circuit level parameter to represent the protective device requirements. The proposed function also considers a wide range of technical issues such as active and reactive power losses of the system, the voltage profile, the line loading and the MVA intake by the grid. The optimization technique based on particle swarm optimization (PSO) is introduced. The analysis of continuation power flow to determine the effect of DG units on the most sensitive buses to voltage collapse is carried out. The proposed algorithm is tested using the 38-bus radial system and the IEEE 30-bus meshed system. The results show the effectiveness of the proposed algorithm.