期刊文献+

The Effect of Energy Levels of the Electron Acceptor Materials on Organic Photovoltaic Cells

下载PDF
导出
摘要 Organic photovoltaic cells have been fabricated using copper phthalocyanine CuPc as electron donor and C60 or PCBM as electron acceptor. We have investigated the I-V measurements of two different structures: ITO/PEDOT: PSS/(CuPc:C60 or CuPc:PCBM)/BCP/Al. We have observed that the substitution of PCBM by C60 scales up the photocurrent and the efficiency of the devices. As for the open-circuit voltage and the fill factor, we have seen that Voc and FF depend on the energy difference between the highest occupied molecular orbital (HOMO) of CuPc and the lowest unoccupied molecular orbital (LUMO)of C60 or PCBM. Organic photovoltaic cells have been fabricated using copper phthalocyanine CuPc as electron donor and C60 or PCBM as electron acceptor. We have investigated the I-V measurements of two different structures: ITO/PEDOT: PSS/(CuPc:C60 or CuPc:PCBM)/BCP/Al. We have observed that the substitution of PCBM by C60 scales up the photocurrent and the efficiency of the devices. As for the open-circuit voltage and the fill factor, we have seen that Voc and FF depend on the energy difference between the highest occupied molecular orbital (HOMO) of CuPc and the lowest unoccupied molecular orbital (LUMO)of C60 or PCBM.
出处 《Smart Grid and Renewable Energy》 2011年第3期278-281,共4页 智能电网与可再生能源(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部