期刊文献+

Performance of a Refrigeration Absorption Cycle Driven by Different Power Sources

Performance of a Refrigeration Absorption Cycle Driven by Different Power Sources
下载PDF
导出
摘要 In this study, performance assessment of absorption refrigeration cycle has been carried out under variable power sources namely electric, conventional fuel and renewable energy sources. The ammonia-water absorption cycle was used in this work, the temperatures at each point in the cycle such as generator, absorber, evaporator and condenser have been measured and with using absorption device system. The coefficient of performance and efficiency of the plant were measured and then compared. The results showed that when the cycle driven by electricity, the coefficient of performance varied 0.694 to 1.032 along the test time and the generator temperature changes from 48.1°C to 101.5°C with the average efficiency of 57.1% and average coefficient of performance of 0.78. When methane used as a fuel to generate power the coefficient of performance varied between 0.686 and 0.94 under the generator temperature of 123.3°C and 127.4°C and average efficiency of 40.02% with coefficient of performance of 0.735. Solar energy used as the alternative source of power which is the clean and safe power source and when the plant driven by the solar thermal energy, the coefficient of performance reached to 0.801 under the generator temperature of 91°C, but the system efficiency about 11.68% along the test time. Solar energy can be used efficiently and replaced the conventional power sources to drive the absorption refrigeration unit. In this study, performance assessment of absorption refrigeration cycle has been carried out under variable power sources namely electric, conventional fuel and renewable energy sources. The ammonia-water absorption cycle was used in this work, the temperatures at each point in the cycle such as generator, absorber, evaporator and condenser have been measured and with using absorption device system. The coefficient of performance and efficiency of the plant were measured and then compared. The results showed that when the cycle driven by electricity, the coefficient of performance varied 0.694 to 1.032 along the test time and the generator temperature changes from 48.1°C to 101.5°C with the average efficiency of 57.1% and average coefficient of performance of 0.78. When methane used as a fuel to generate power the coefficient of performance varied between 0.686 and 0.94 under the generator temperature of 123.3°C and 127.4°C and average efficiency of 40.02% with coefficient of performance of 0.735. Solar energy used as the alternative source of power which is the clean and safe power source and when the plant driven by the solar thermal energy, the coefficient of performance reached to 0.801 under the generator temperature of 91°C, but the system efficiency about 11.68% along the test time. Solar energy can be used efficiently and replaced the conventional power sources to drive the absorption refrigeration unit.
出处 《Smart Grid and Renewable Energy》 2014年第7期161-169,共9页 智能电网与可再生能源(英文)
关键词 ABSORPTION SOLAR Energy PERFORMANCE GENERATOR COP Absorption Solar Energy Performance Generator COP
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部