期刊文献+

Effect of the Orientation on the Comfort of a Building Made with Compressed Earth Block

Effect of the Orientation on the Comfort of a Building Made with Compressed Earth Block
下载PDF
导出
摘要 <span style="font-family:Verdana;">Thermal comfort is one of the most important requirements that scientists and building designers must meet to ensure the indoor air quality knowing its importance on productivity and the health of occupants. However, it has never been of great concern for architects and architectural historians and seldom explores it. Buildings are the large consumer of the most energy consumption (around 40% worldwide) and generate around 35% of GHGs like CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> that leads to extreme climate change. Hence, general and specific eco-friendly solutions in the field of building construction are required. Analysis of this study shows that air conditioning consumption can be significantly reduced thanks to the compressed earth bricks and by taking into account the climate and the orientation of the facades. However, this paper establishes viable low-cost option of building energy consumption while maintaining the thermal comfort and good indoor air quality. This work explains the effect of a single residential room orientation, by reducing </span><span style="font-family:Verdana;">the thermal amplitude, and improving the thermal phase shift in Ouagadougou</span><span style="font-family:Verdana;"> climate conditions in April. Internal temperature was modelled with 8 cardinal orientations. The result corresponds to a decrease of thermal amplitude </span><span style="font-family:Verdana;">damping greater than 4<span style="white-space:nowrap;">°</span>C between East-West and North-South sides and, with a thermal phase shift of 4</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">hours</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">minutes between the Nord and West walls.</span> <span style="font-family:Verdana;">Thermal comfort is one of the most important requirements that scientists and building designers must meet to ensure the indoor air quality knowing its importance on productivity and the health of occupants. However, it has never been of great concern for architects and architectural historians and seldom explores it. Buildings are the large consumer of the most energy consumption (around 40% worldwide) and generate around 35% of GHGs like CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> that leads to extreme climate change. Hence, general and specific eco-friendly solutions in the field of building construction are required. Analysis of this study shows that air conditioning consumption can be significantly reduced thanks to the compressed earth bricks and by taking into account the climate and the orientation of the facades. However, this paper establishes viable low-cost option of building energy consumption while maintaining the thermal comfort and good indoor air quality. This work explains the effect of a single residential room orientation, by reducing </span><span style="font-family:Verdana;">the thermal amplitude, and improving the thermal phase shift in Ouagadougou</span><span style="font-family:Verdana;"> climate conditions in April. Internal temperature was modelled with 8 cardinal orientations. The result corresponds to a decrease of thermal amplitude </span><span style="font-family:Verdana;">damping greater than 4<span style="white-space:nowrap;">°</span>C between East-West and North-South sides and, with a thermal phase shift of 4</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">hours</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">minutes between the Nord and West walls.</span>
作者 Fati Amadou Oumarou Adama Ouedraogo Sikoudouin Maurice Thierry Ky Ramchandra Bhandari Amadou Konfe Ramatou Konate Rabani Adamou Dieudonné Joseph Bathiebo Sié Kam Fati Amadou Oumarou;Adama Ouedraogo;Sikoudouin Maurice Thierry Ky;Ramchandra Bhandari;Amadou Konfe;Ramatou Konate;Rabani Adamou;Dieudonné Joseph Bathiebo;Sié Kam(Laboratory of Renewable Thermal Energies, University Joseph KI-ZERBO: UFR/SEA, Ouagadougou, Burkina Faso;Faculty of Science and Technologies, Department of Chemistry, University Abdou Moumouni, Niamey, Niger;Centre Universitaire Polytechnique de Kaya (CUP-Kaya), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso;Institute for Technology and Resources Management in the Tropics and Subtropics: ITT, Cologne, Germany)
出处 《Smart Grid and Renewable Energy》 2021年第7期99-112,共14页 智能电网与可再生能源(英文)
关键词 Thermal Comfort Building Optimal Orientation Thermal Amplitude Thermal Phase Shift Energy Consumption Optimal Orientation Thermal Comfort Building Optimal Orientation Thermal Amplitude Thermal Phase Shift Energy Consumption Optimal Orientation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部