摘要
Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart building ideas and execution are of great interest and top priority due to the building’s occupants’ misused and high-power consumption. This paper addresses the design and execution of an energy management system that includes a solar power system for generating power for the building’s needs and a PIR-based automation system for efficient power use. This project was carried out at the Military Technological College (MTC) in Muscat, in the system engineering department’s offices. This project seeks to generate power for the building’s energy needs using solar photovoltaic panels and reduce energy consumption within the office using a PIR-based automation system. The results demonstrate that after the breakeven point (the time it takes to recoup the initial investment), it can provide power to the building for another 17 years. The calculations and practical results presented in this study approve that the system is extremely helpful.
Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart building ideas and execution are of great interest and top priority due to the building’s occupants’ misused and high-power consumption. This paper addresses the design and execution of an energy management system that includes a solar power system for generating power for the building’s needs and a PIR-based automation system for efficient power use. This project was carried out at the Military Technological College (MTC) in Muscat, in the system engineering department’s offices. This project seeks to generate power for the building’s energy needs using solar photovoltaic panels and reduce energy consumption within the office using a PIR-based automation system. The results demonstrate that after the breakeven point (the time it takes to recoup the initial investment), it can provide power to the building for another 17 years. The calculations and practical results presented in this study approve that the system is extremely helpful.