摘要
Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the complexities and expense of creating personal web servers, a number of service providers have created websites offering free data hosting and viewing capabilities. Simple setup and configuration routines and available application programming interfaces allow users to quickly and easily interface sensing and monitoring devices to the internet. To demonstrate the ease and feasibility of deploying internet-connected devices, an urban landscape environmental monitoring system, consisting of two wireless field sensing systems and a wireless central receiver, was developed. The field-data sensing units consisted of Arduino microcontroller platforms, sensors, and Xbee radio modems, while the receiver consisted of an Arduino microcontroller, Xbee radio, and Ethernet module connected to an internet modem. The receiver collected and stored data from the wireless transmitters, and uploaded the data to the Xively Cloud Services data hosting and sharing website. Real-time and archived sensor data were then made available for public viewing via the internet and a web browser. Data-sharing services such as Xively provide rapid and convenient means of developing internet-accessible data-collection and viewing applications, enabling enhanced access to the Internet of Things.
Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the complexities and expense of creating personal web servers, a number of service providers have created websites offering free data hosting and viewing capabilities. Simple setup and configuration routines and available application programming interfaces allow users to quickly and easily interface sensing and monitoring devices to the internet. To demonstrate the ease and feasibility of deploying internet-connected devices, an urban landscape environmental monitoring system, consisting of two wireless field sensing systems and a wireless central receiver, was developed. The field-data sensing units consisted of Arduino microcontroller platforms, sensors, and Xbee radio modems, while the receiver consisted of an Arduino microcontroller, Xbee radio, and Ethernet module connected to an internet modem. The receiver collected and stored data from the wireless transmitters, and uploaded the data to the Xively Cloud Services data hosting and sharing website. Real-time and archived sensor data were then made available for public viewing via the internet and a web browser. Data-sharing services such as Xively provide rapid and convenient means of developing internet-accessible data-collection and viewing applications, enabling enhanced access to the Internet of Things.