摘要
The examination work clarifies a practical, superior registering stage for the parallel usage of the FDTD calculation on PC bunches utilizing the message-passing interface (MPI) library, which is a neighborhood framework comprising of various interconnected (PCs), and is now generally utilized for parallel figuring. In this paper, we describe the essential elements of a parallel algorithm for the FDTD method using the MPI (message passing interface). At present, the Internet of Things (IoT) has attracted more and more researchers’ attention. Parallel FDTD method is applied to analyze the electromagnetic problems of the electrically large targets. This paper presents the concept of “the optimum virtual topology” for MPI based parallel FDTD. Parallel FDTD method is applied to analyze the electromagnetic problems of the electrically large targets on super computer.
The examination work clarifies a practical, superior registering stage for the parallel usage of the FDTD calculation on PC bunches utilizing the message-passing interface (MPI) library, which is a neighborhood framework comprising of various interconnected (PCs), and is now generally utilized for parallel figuring. In this paper, we describe the essential elements of a parallel algorithm for the FDTD method using the MPI (message passing interface). At present, the Internet of Things (IoT) has attracted more and more researchers’ attention. Parallel FDTD method is applied to analyze the electromagnetic problems of the electrically large targets. This paper presents the concept of “the optimum virtual topology” for MPI based parallel FDTD. Parallel FDTD method is applied to analyze the electromagnetic problems of the electrically large targets on super computer.