摘要
Remotely sensed (RS) imagery is increasingly being adopted in investigations and applications outside of traditional land-use land-cover change (LUCC) studies. This is due to the increased awareness by governments, NGOs and Industry that earth observation data provide important and useful spatial and temporal information that can be used to make better decisions, design policies and address problems that range in scale from local to global. Additionally, citizens are increasingly adopting spatial analysis into their work as they utilize a suite of readily available geospatial tools. This paper examines some of the ways remotely sensed images and derived maps are being extended beyond LUCC to areas such as fire modeling, coastal and marine applications, infrastructure and urbanization, archeology, and to ecological, or infrastructure footprint analysis. Given the interdisciplinary approach of such work, this paper organizes selected studies into broad categories identified above. Findings demonstrate that RS data and technologies are being widely used in many fields, ranging from fishing to war fighting. As technology improves, costs go down, quality increases and data become increasingly available, greater numbers of organizations and local citizens will be using RS in important everyday applications.
Remotely sensed (RS) imagery is increasingly being adopted in investigations and applications outside of traditional land-use land-cover change (LUCC) studies. This is due to the increased awareness by governments, NGOs and Industry that earth observation data provide important and useful spatial and temporal information that can be used to make better decisions, design policies and address problems that range in scale from local to global. Additionally, citizens are increasingly adopting spatial analysis into their work as they utilize a suite of readily available geospatial tools. This paper examines some of the ways remotely sensed images and derived maps are being extended beyond LUCC to areas such as fire modeling, coastal and marine applications, infrastructure and urbanization, archeology, and to ecological, or infrastructure footprint analysis. Given the interdisciplinary approach of such work, this paper organizes selected studies into broad categories identified above. Findings demonstrate that RS data and technologies are being widely used in many fields, ranging from fishing to war fighting. As technology improves, costs go down, quality increases and data become increasingly available, greater numbers of organizations and local citizens will be using RS in important everyday applications.