期刊文献+

A Study on Tropical Land Cover Classification Using ALOS PALSAR 50 m Ortho-Rectified Mosaic Data

A Study on Tropical Land Cover Classification Using ALOS PALSAR 50 m Ortho-Rectified Mosaic Data
下载PDF
导出
摘要 The main objective of this study is to find better classifier of mapping tropical land covers using Synthetic Aperture Radar (SAR) imagery. The data used are Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) 50 m ortho-rectified mosaic data. Training data for forest, herbaceous, agriculture, urban and water body in the test area located in Kalimantan were collected. To achieve more accurate classification, a modified slope correction formula was created to calibrate the intensity distortions of SAR data. The accuracy of two classifiers called Sequential Minimal Optimization (SMO) and Random Forest (RF) were applied and compared in this study. We focused on object-based approach due to its capability of providing both spatial and spectral information. Optimal combination of features was selected from 32 sets of features based on layer value, texture and geometry. The overall accuracy of land cover classification using RF classifier and SMO classifier was 46.8% and 55.6% respectively, and that of forest and non-forest classification was 74.4% and 79.4% respectively. This indicates that RF classifier has better performance than SMO classifier. The main objective of this study is to find better classifier of mapping tropical land covers using Synthetic Aperture Radar (SAR) imagery. The data used are Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) 50 m ortho-rectified mosaic data. Training data for forest, herbaceous, agriculture, urban and water body in the test area located in Kalimantan were collected. To achieve more accurate classification, a modified slope correction formula was created to calibrate the intensity distortions of SAR data. The accuracy of two classifiers called Sequential Minimal Optimization (SMO) and Random Forest (RF) were applied and compared in this study. We focused on object-based approach due to its capability of providing both spatial and spectral information. Optimal combination of features was selected from 32 sets of features based on layer value, texture and geometry. The overall accuracy of land cover classification using RF classifier and SMO classifier was 46.8% and 55.6% respectively, and that of forest and non-forest classification was 74.4% and 79.4% respectively. This indicates that RF classifier has better performance than SMO classifier.
出处 《Advances in Remote Sensing》 2014年第3期208-218,共11页 遥感技术进展(英文)
关键词 Slope Correction Land COVER Classification Feature Selection Sequential MINIMAL Optimization Random Forest Slope Correction Land Cover Classification Feature Selection Sequential Minimal Optimization Random Forest
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部