期刊文献+

Hyperspectral Analysis for a Robust Assessment of Soil Properties Using Adapted PLSR Method

Hyperspectral Analysis for a Robust Assessment of Soil Properties Using Adapted PLSR Method
下载PDF
导出
摘要 Near-InfraRed and Visible (Vis-NIR) spectroscopy is a promising tool allowing to quantify soil properties. It shows that information encoded in hyperspectral data can be useful after signal processing and model calibration steps, in order to estimate various soil properties throughout appropriate statistical models. However, one of the problems encountered in the case of hyperspectral data is related to information redundancy between different spectral bands. This redundancy is at the origin of multi-collinearity in the explanatory variables leading to unstable regression coefficients (and, difficult to interpret). Moreover, in hyperspectral spectrum, the information concerning the chemical specificity is spread over several wavelengths. Therefore, it is not wise to remove this redundancy because this removal affects both relevant and irrelevant hyperspectral information. In this study, the faced challenge is to optimize the estimation of some soil properties by exploiting all the spectral richness of the hyperspectral data by providing complementary rather than redundant information. To this end, a new reliable approach based on hyperspectral data analysis and partial least squares regression is proposed. Near-InfraRed and Visible (Vis-NIR) spectroscopy is a promising tool allowing to quantify soil properties. It shows that information encoded in hyperspectral data can be useful after signal processing and model calibration steps, in order to estimate various soil properties throughout appropriate statistical models. However, one of the problems encountered in the case of hyperspectral data is related to information redundancy between different spectral bands. This redundancy is at the origin of multi-collinearity in the explanatory variables leading to unstable regression coefficients (and, difficult to interpret). Moreover, in hyperspectral spectrum, the information concerning the chemical specificity is spread over several wavelengths. Therefore, it is not wise to remove this redundancy because this removal affects both relevant and irrelevant hyperspectral information. In this study, the faced challenge is to optimize the estimation of some soil properties by exploiting all the spectral richness of the hyperspectral data by providing complementary rather than redundant information. To this end, a new reliable approach based on hyperspectral data analysis and partial least squares regression is proposed.
出处 《Advances in Remote Sensing》 2019年第4期99-108,共10页 遥感技术进展(英文)
关键词 Spectroscopy HYPERSPECTRAL Data Soil Properties PARTIAL Least SQUARES Regression Model Spectroscopy Hyperspectral Data Soil Properties Partial Least Squares Regression Model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部