期刊文献+

Topological Order Value Iteration Algorithm for Solving Probabilistic Planning

Topological Order Value Iteration Algorithm for Solving Probabilistic Planning
下载PDF
导出
摘要 AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Processes (MDPs).Value Iteration is an inef?cient algorithm for MDPs, because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, LAO*, LRTDP and HDP are state-of-the-art ones. All of these use reach ability analysis and heuristics to avoid some unnecessary backups. However, none of these approaches fully exploit the graphical features of the MDPs or use these features to yield the best backup sequence of the state space. We introduce an improved algorithm named Topological Order Value Iteration (TOVI) that can circumvent the problem of unnecessary backups by detecting the structure of MDPs and backing up states based on topological sequences. The experimental results demonstrate the effectiveness and excellent performance of our algorithm. AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Processes (MDPs).Value Iteration is an inef?cient algorithm for MDPs, because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, LAO*, LRTDP and HDP are state-of-the-art ones. All of these use reach ability analysis and heuristics to avoid some unnecessary backups. However, none of these approaches fully exploit the graphical features of the MDPs or use these features to yield the best backup sequence of the state space. We introduce an improved algorithm named Topological Order Value Iteration (TOVI) that can circumvent the problem of unnecessary backups by detecting the structure of MDPs and backing up states based on topological sequences. The experimental results demonstrate the effectiveness and excellent performance of our algorithm.
出处 《Communications and Network》 2013年第1期86-89,共4页 通讯与网络(英文)
关键词 PROBABILISTIC Planning MARKOV DECISION Processes Dynamic PROGRAMMING Value ITERATION Probabilistic Planning Markov Decision Processes Dynamic Programming Value Iteration
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部