期刊文献+

Speaker Recognition System Based on the Baseband Correlation Score Reliability Fusion

Speaker Recognition System Based on the Baseband Correlation Score Reliability Fusion
下载PDF
导出
摘要 Emotion mismatch between training and testing will cause system performance decline sharply which is emotional speaker recognition. It is an important idea to solve this problem according to the emotion normalization of test speech. This method proceeds from analysis of the differences between every kind of emotional speech and neutral speech. Besides, it takes the baseband mismatch of emotional changes as the main line. At the same time, it gives the corresponding algorithm according to four technical points which are emotional expansion, emotional shield, emotional normalization and score compensation. Compared with the traditional GMM-UBM method, the recognition rate in MASC corpus and EPST corpus was increased by 3.80% and 8.81% respectively. Emotion mismatch between training and testing will cause system performance decline sharply which is emotional speaker recognition. It is an important idea to solve this problem according to the emotion normalization of test speech. This method proceeds from analysis of the differences between every kind of emotional speech and neutral speech. Besides, it takes the baseband mismatch of emotional changes as the main line. At the same time, it gives the corresponding algorithm according to four technical points which are emotional expansion, emotional shield, emotional normalization and score compensation. Compared with the traditional GMM-UBM method, the recognition rate in MASC corpus and EPST corpus was increased by 3.80% and 8.81% respectively.
出处 《Communications and Network》 2013年第3期596-600,共5页 通讯与网络(英文)
关键词 EMOTIONAL SPEAKER Recognition Pitch NORMALIZATION Method Model MISMATCH Detection EMOTIONAL NORMALIZATION Emotional Speaker Recognition Pitch Normalization Method Model Mismatch Detection Emotional Normalization
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部