摘要
Mobile agent technology is promising for e-commerce and distributed computing applications due to its properties of mobility and autonomy. One of the most security-sensitive tasks a mobile agent is expected to perform is signing digital signatures on a remote untrustworthy service host that is beyond the control of the agent host. This service host may treat the mobile agents unfairly, i.e. according to its’ own benefit rather than to their time of arrival. In this research, we present a novel protocol, called Collusion-Resistant Distributed Agent-based Signature Delegation (CDASD) protocol, to allow an agent host to delegate its signing power to an anonymous mobile agent in such a way that the mobile agent does not reveal any information about its host’s identity and, at the same time, can be authenticated by the service host, hence, ensuring fairness of service provision. The protocol introduces a verification server to verify the signature generated by the mobile agent in such a way that even if colluding with the service host, both parties will not get more information than what they already have. The protocol incorporates three methods: Agent Signature Key Generation method, Agent Signature Generation method, Agent Signature Verification method. The most notable feature of the protocol is that, in addition to allowing secure and anonymous signature delegation, it enables tracking of malicious mobile agents when a service host is attacked. The security properties of the proposed protocol are analyzed, and the protocol is compared with the most related work.
Mobile agent technology is promising for e-commerce and distributed computing applications due to its properties of mobility and autonomy. One of the most security-sensitive tasks a mobile agent is expected to perform is signing digital signatures on a remote untrustworthy service host that is beyond the control of the agent host. This service host may treat the mobile agents unfairly, i.e. according to its’ own benefit rather than to their time of arrival. In this research, we present a novel protocol, called Collusion-Resistant Distributed Agent-based Signature Delegation (CDASD) protocol, to allow an agent host to delegate its signing power to an anonymous mobile agent in such a way that the mobile agent does not reveal any information about its host’s identity and, at the same time, can be authenticated by the service host, hence, ensuring fairness of service provision. The protocol introduces a verification server to verify the signature generated by the mobile agent in such a way that even if colluding with the service host, both parties will not get more information than what they already have. The protocol incorporates three methods: Agent Signature Key Generation method, Agent Signature Generation method, Agent Signature Verification method. The most notable feature of the protocol is that, in addition to allowing secure and anonymous signature delegation, it enables tracking of malicious mobile agents when a service host is attacked. The security properties of the proposed protocol are analyzed, and the protocol is compared with the most related work.