期刊文献+

Extracting Significant Patterns for Oral Cancer Detection Using Apriori Algorithm

Extracting Significant Patterns for Oral Cancer Detection Using Apriori Algorithm
下载PDF
导出
摘要 Presently, no effective tool exists for early diagnosis and treatment of oral cancer. Here, we describe an approach for cancer detection and prevention based on analysis using association rule mining. The data analyzed are pertaining to clinical symptoms, history of addiction, co-morbid condition and survivability of the cancer patients. The extracted rules are useful in taking clinical judgments and making right decisions related to the disease. The results shown here are promising and show the potential use of this approach toward eventual development of diagnostic assay and treatment with sufficient support and confidence suitable for detection of early-stage oral cancer. Presently, no effective tool exists for early diagnosis and treatment of oral cancer. Here, we describe an approach for cancer detection and prevention based on analysis using association rule mining. The data analyzed are pertaining to clinical symptoms, history of addiction, co-morbid condition and survivability of the cancer patients. The extracted rules are useful in taking clinical judgments and making right decisions related to the disease. The results shown here are promising and show the potential use of this approach toward eventual development of diagnostic assay and treatment with sufficient support and confidence suitable for detection of early-stage oral cancer.
出处 《Intelligent Information Management》 2014年第2期30-37,共8页 智能信息管理(英文)
关键词 Data MINING Association Rule MINING APRIORI ORAL Cancer WEKA Data Mining Association Rule Mining Apriori Oral Cancer WEKA
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部