期刊文献+

Incorporating User’s Preferences into Scholarly Publications Recommendation

Incorporating User’s Preferences into Scholarly Publications Recommendation
下载PDF
导出
摘要 Over the years, there has been increasing growth in academic digital libraries. It has therefore become overwhelming for researchers to determine important research materials. In most existing research works that consider scholarly paper recommendation, the researcher’s preference is left out. In this paper, therefore, Frequent Pattern (FP) Growth Algorithm is employed on potential papers generated from the researcher’s preferences to create a list of ranked papers based on citation features. The purpose is to provide a recommender system that is user oriented. A walk through algorithm is implemented to generate all possible frequent patterns from the FP-tree after which an output of ordered recommended papers combining subjective and objective factors of the researchers is produced. Experimental results with a scholarly paper recommendation dataset show that the proposed method is very promising, as it outperforms recommendation baselines as measured with nDCG and MRR. Over the years, there has been increasing growth in academic digital libraries. It has therefore become overwhelming for researchers to determine important research materials. In most existing research works that consider scholarly paper recommendation, the researcher’s preference is left out. In this paper, therefore, Frequent Pattern (FP) Growth Algorithm is employed on potential papers generated from the researcher’s preferences to create a list of ranked papers based on citation features. The purpose is to provide a recommender system that is user oriented. A walk through algorithm is implemented to generate all possible frequent patterns from the FP-tree after which an output of ordered recommended papers combining subjective and objective factors of the researchers is produced. Experimental results with a scholarly paper recommendation dataset show that the proposed method is very promising, as it outperforms recommendation baselines as measured with nDCG and MRR.
作者 Tobore Igbe Bolanle Ojokoh Tobore Igbe;Bolanle Ojokoh(Department of Computer Science, Federal University of Technology, Akure, Nigeria)
出处 《Intelligent Information Management》 2016年第2期27-40,共14页 智能信息管理(英文)
关键词 PERSONALIZATION Digital Library Information Retrieval Recommender System Citation Analysis User Preferences Personalization Digital Library Information Retrieval Recommender System Citation Analysis User Preferences
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部