期刊文献+

Adaptation in Stochastic Dynamic Systems—Survey and New Results III: Robust LQ Regulator Modification

Adaptation in Stochastic Dynamic Systems—Survey and New Results III: Robust LQ Regulator Modification
下载PDF
导出
摘要 The paper is intended to provide algorithmic and computational support for solving the frequently encountered linear-quadratic regulator (LQR) problems based on receding-horizon control methodology which is most applicable for adaptive and predictive control where Riccati iterations rather than solution of Algebraic Riccati Equations are needed. By extending the most efficient computational methods of LQG estimation to the LQR problems, some new algorithms are formulated and rigorously substantiated to prevent Riccati iterations divergence when cycled in computer implementation. Specifically developed for robust LQR implementation are the two-stage Riccati scalarized iteration algorithms belonging to one of three classes: 1) Potter style (square-root), 2) Bierman style (LDLT), and 3) Kailath style (array) algorithms. They are based on scalarization, factorization and orthogonalization techniques, which allow more reliable LQR computations. Algorithmic templates offer customization flexibility, together with the utmost brevity, to both users and application programmers, and to ensure the independence of a specific computer language. The paper is intended to provide algorithmic and computational support for solving the frequently encountered linear-quadratic regulator (LQR) problems based on receding-horizon control methodology which is most applicable for adaptive and predictive control where Riccati iterations rather than solution of Algebraic Riccati Equations are needed. By extending the most efficient computational methods of LQG estimation to the LQR problems, some new algorithms are formulated and rigorously substantiated to prevent Riccati iterations divergence when cycled in computer implementation. Specifically developed for robust LQR implementation are the two-stage Riccati scalarized iteration algorithms belonging to one of three classes: 1) Potter style (square-root), 2) Bierman style (LDLT), and 3) Kailath style (array) algorithms. They are based on scalarization, factorization and orthogonalization techniques, which allow more reliable LQR computations. Algorithmic templates offer customization flexibility, together with the utmost brevity, to both users and application programmers, and to ensure the independence of a specific computer language.
出处 《International Journal of Communications, Network and System Sciences》 2012年第9期609-623,共15页 通讯、网络与系统学国际期刊(英文)
关键词 Adaptive CONTROL Factorization Least Squares Linear Systems LQG Estimator LQ REGULATOR ORTHOGONALIZATION Receding Horizon CONTROL SCALARIZATION Adaptive Control Factorization Least Squares Linear Systems LQG Estimator LQ Regulator Orthogonalization Receding Horizon Control Scalarization
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部