摘要
In wireless sensor networks (WSNs), it is essential to save energy consumption at sensor nodes (SNs). A clustering technique is one of the approaches to save energy consumption, where several neighboring SNs form a cluster and transmit the sensed data to their cluster head (CH), and then the CH sends the aggregated data to a sink node. Under spatial non-uniform traffic environments, the clustering technique causes the non-uniformity in data gathering performance and energy consumption between clusters in WSNs. In this paper, we propose a clustering scheme for the WSNs employing IEEE802.15.4 beacon enabled mode under various non-uniform traffic environments. The proposed scheme distributes network traffic uniformly to the clusters through cluster area control by adjusting beacon transmission power, and thereby achieves uniform and improved data gathering performance. In the clusters with expanded area, however, the performance degradation arises from long distance communications. To solve this problem, the proposed scheme controls transmission power at SNs. In addition, to reduce energy consumption the proposed scheme sets the appropriate active period length in duty cycle operation to the current traffic condition. The performance evaluations by computer simulation show the effectiveness of the proposed scheme for the WSNs under various non-uniform traffic environments.
In wireless sensor networks (WSNs), it is essential to save energy consumption at sensor nodes (SNs). A clustering technique is one of the approaches to save energy consumption, where several neighboring SNs form a cluster and transmit the sensed data to their cluster head (CH), and then the CH sends the aggregated data to a sink node. Under spatial non-uniform traffic environments, the clustering technique causes the non-uniformity in data gathering performance and energy consumption between clusters in WSNs. In this paper, we propose a clustering scheme for the WSNs employing IEEE802.15.4 beacon enabled mode under various non-uniform traffic environments. The proposed scheme distributes network traffic uniformly to the clusters through cluster area control by adjusting beacon transmission power, and thereby achieves uniform and improved data gathering performance. In the clusters with expanded area, however, the performance degradation arises from long distance communications. To solve this problem, the proposed scheme controls transmission power at SNs. In addition, to reduce energy consumption the proposed scheme sets the appropriate active period length in duty cycle operation to the current traffic condition. The performance evaluations by computer simulation show the effectiveness of the proposed scheme for the WSNs under various non-uniform traffic environments.